regression and Bayesian ridge regression models
Keywords:
أأنموذج خطي متعدد, انحدار الحرف المتحيزة, انحدار الحرف البيزيةAbstract
The task of selecting variables is important to build a model that leads to accurate predictions, especially when the data under study suffer from the problem of linear multiplicity, and the presence of many phenomena in our daily life, especially the social suffer from this problem, In order to compare the methods of estimating the parameters of the regression model of the biased ridge regression and the Bayesian ridge regression. As a comparison of the two methods through the mean squares error MSE and the probability value P-Value. In order to apply the methods in practice, a random sample of 100 women's fertility was withdrawn to study the factors affecting the number of children born as dependent variable and many independent random variables is (woman age , the age at married , graduate of woman , graduate of husband , women's weight, women's use of contraception, women's smoking, Age of Husband, job of husband, Marriage Period, Number of Dead Children, Hours of Exercise per Week, hours of female sleep per day, women taking drugs, duration of breast feeding, mother's job), data were suffering from a linear multiplicity problem, It was found that the Bayesian regression method has the best estimation methods for owning the MSE .
References
النعيمي , اسوان محمد طيب ; دبدوب , مروان عبد العزيز, (2006) , " طرائق مقترحة في انحدار الحرف " , المجلة العراقية للعلوم الاحصائية , (10), 85-106.
عبودي , عماد حازم , علي , حميد يوسف , (2017) , " مقارنة مقدري Hurber Lasso و Hurber Elastic Net باستخدام المحاكاة " , مجلة الكوت للعلوم الاقتصادية والادارية , العدد (28) , الجزء الاول , بحث مستل من اطروحة دكتوراه .
مزاحم, محمد يحيى , (2005) , " استخدام المكونات الرئيسية وانحدار الحرف في تقدير معادلة السعر العالمي للقمح للمدة من 1961-2002) , مجلة تكريت للعلوم الادارية والاقتصادية , الجلد -1 , العدد-1. , 146-156.
ALKHAMISI M. A. , SHUKUR G., (2007) , " A Monte Carlo Study of Recent Ridge Parameters " , Communications in Statistics—Simulation and Computation, Taylor & Francis, 36: 535–547.
B.F.,swindle , (1976).Good Ridge Estimators Based on prior Information. Communications in Statistis,11,1065-1075.
Bare, B. Bruce; Hann David W., (1981). "(Applications of Ridge Regression in Forestry ", Forest $ci. Vol. 27, No. 2, 1981, pp. 339-348.
C. Montgomery, Douglas; A. Peck, Elizabeth; Vinining G. Geoffery , (2012). "Introduction to linear regression analysis'' , Fifth Edition, A JOHN WILEY & SONS, INC., PUBLICATION. 1
Duzan , Hanan; Shariff, Nurul Sima Mohammed, (2015) , " Ridge Regression for solving the Multicollinearity Problem: review of Methods and Models" , Journal of Applied Statistics, 15(3) : 392-404.
F. Benee,Swindle , (2013) , " Good ridge estimators based on prior information'', Moskow State Univ Bibliote, Taylor & Francis.
Fonti Valeria, (2017) , " Feature Selection using LASSO" , Research Paper in Business Analytics, VU Amsterdam .
Hoerl, Arthur .E. and Kennard, Robert W., (1970a)."Ridge regression: Biased estimation for non-orthogonal Problems", T Econometrics Journal , Vol.12, No.1,55-67.
Hoerl, Arthur .E. and Kennard, Robert W., (1970b)."Ridge regression: Applications to Non-Orthogonal Problems, ", T Econometrics Journal, Vol.12, No.1,69-82.
Kannard , Arthur E. Boart W.; F. Baldwin, Kent, (1975), '' Ridge Regression , Some solutions '' , Communications in statistics , 4(2), 105-123.
Kibria, B. M. Golam , (2003) , " (Performance of Some New Ridge Regression Estimators" , Communications in , Simulation and Computation. Vol. 32, No. 2, pp. 419–435.
L.J, Pliskin , (1987) ''A Ridge type Estimator and good prior Means. Communication in Statistics, 16,3427-3429.
Lindley, D.V.; Smith, A.F.M, (1972), " Bayes Estimation for the linear Model" , Journal of Royal Statistical Society , Series B ( Methodological) , Volume 34, Issue 1 , 1-41.
Mason, R.L.F. Gunst; J.T. Wabster, (1975), ' Regression analysis and problems of multicoleanirutiy " , comM. sTATST,4,3,277.
Robert H. Crouse & Chun Jin.(1995)."Unbiased RIDGE Estimation With prior Information And Ridge Trace"Commun.Statist.-Theory Meth.27(9),2341-2354.
Tibshirani , Ryan , ( 2013) , " Modern regression " , Optional reading: ISL 6.2.1, ESL 3.4.1, Data Mining: 36-462/36-662.
W. Wichern , Dean ; A. Churchill ,Gilbert , (2012) .''A Comparison of Ridge Estimators'', T Econometrics Journal, 301-311.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Economics and Administration College - Karbala University
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain the copyright of their papers without restrictions.