بناء توزيع احتمالي ماكسويل مرجح جديد مع مقارنة معلمتيه

المؤلفون

  • أ.لـ نورة علي عزيز

الكلمات المفتاحية:

توزيع رايلي، ماكسويل المرجح، دالة جاما، دالة التوزيع التراكمي، لحظات متحيزة للطول، لحظة L، MLE

الملخص

تناقش هذه الورقة توزيع ماكسويل مع معلمة المقياس (θ)، وكيفية توسيع هذه العائلة للعثور على صيغة Maxwell الموزونة p.d.f والتي تعتبر ضرورية لأخذ العينات من مجتمعات ذات أحجام مختلفة، لذلك نطبق بعض التحويلات على [f_T (t;θ)] للـحصول على [g_w (t)]، ثم تم الحصول على C.D.F الخاص به. كما تم أيضًا اشتقاق صيغة لحظات r^th حول الأصل للمساعدة في العثور على مقدرات العزوم لـ (β).

المراجع

References

- Ahmed, A., K.A. Mir and J.A. Reshi, 2013. On new method of estimation of parameters of size-biased generalized gamma distribution and its structural properties. IOSR J. Math., 5: 34-40.

- Al-kadim, K.A. and Hussein, N.A.(2014), Length-Biased Weighted Exponential and Rayleigh distribution with Application, Mathematical Theory and Modeling, 4(7), 137-152.

- Andrew R. Wedith, (2002), "Statistical pattern recognition" 2nd edition, Jphn Wiley & sons.

- B. S. Trivedi1, M. N. Patel, (2015), " Estimation in Misclassified Size – Biased Log Series Distribution", Mathematical Theory and Modeling, Vol.5, No.2.

- Chiung-Yu Huang and Jing Qin, (2011), " Nonparametric estimation for length-biased and right-censored data", Biometrika. 2011 Mar; 98(1): 177–186.

- Das, K. K. and Roy, T.D. (2011). Applicability of Length Biased Weighted Generalized Rayleigh distribution, Advances in Applied Science Research, 2 (4), 320-327.

- Diana Bílková, (2014), " Robust parameter estimations using L-moments, TL-moments and the order statistics ", American Journal of Applied Mathematics 2014; 2(2): 36-53.

- Dongliang Wang, , Alan D. Hutson, Jeffrey C. Miecznikowski, (2010)," L-moment estimation for parametric survival models given censored data ", Statistical Methodology, Volume 7, Issue 6, November 2010, Pages 655–667.

- Hongping Wu, and Yihui Luan, (2014),"An Efficient Estimation of the Mean Residual Life Function with Length-Biased Right-Censored Data", Mathematical Problems in Engineering .

- Jing Kersey and Broderick O. Oluyede, (2011), " Theoretical properties of the length-biased inverse Weibull distribution",

- Joshi, L. and Modi, K. (2012), Weighted Maxwell Distribution, Indian Journal of Statistics and Application, 1(2), 47-53.

- M Nassar and N Nada. A new generalization of the Pareto-geometric distribution. J. Egy. Math. Soc. 2013; 21, 148-55.

- Marzukia, C, E, Walter L. Randeua, Toshiaki Kozub, Toyoshi Shimomaib, Michael Schönhuberd, Hiroyuki Hashiguchic, (2012), " Estimation of raindrop size distribution parameters by maximum likelihood and L-moment methods: Effect of discretization ", Atmospheric Research, Vol.112.

- Muhammad Shuaib Khan, (2012), " L-Moment and Inverse MomentEstimation of the Inverse Generalized Exponential Distribution ", International Journal of Information and Electronics Engineering, Vol. 2, No. 1.

- N. Nanuwong and W Bodhisuwan. Length biased beta-Pareto distribution and its structural properties with application. J. Math. Stat. 2014; 10, 49-57.

- Nareerat Nanuwong and Winai Bodhisuwan, (2014), " LENGTH BIASED BETA-PARETO DISTRIBUTION AND ITS STRUCTURAL PROPERTIES WITH APPLICATION', Journal of Mathematics and Statistics 10 (1): 49-57.

- Otin, R., “Regularized Maxwell equations and nodal finite elements for electromagnetic field computations,” Electromagnetics, Vol. 30, 190–204, 2010.

- P Seenoi, W Bodhisuwan and T Supapakorn. The length-biased exponentiated inverted Weibull distribution. Int. J. Pure Appl. Math. 2014; 92, 191-206.

- Ruben Otin, Luis E. Garcia-Castillo, (2013)," COMPUTATIONAL PERFORMANCE OF A WEIGHTED REGULARIZED MAXWELL EQUATION FINITE ELEMENT FORMULATION ", Electromagnetics Research, Vol. 136, 61–77.

- S.H. Feizjavadiana & R. Hashemia, (2015), " Mean residual weighted versus the length-biased Rayleigh distribution", Journal of Statistical Computation and Simulation Volume 85, Issue 14.

- Ulk¨u Eri¸so˘glu ¨ ∗ and Murat Eri¸so˘glu, (2014), " L-Moments Estimations for Mixture of Weibull Distribution ", Journal of Data Science 12(2014), 69-85 22- Kishore K. Das and Tanusree Deb Roy, (2011)," On Some Length-Biased Weighted Weibull Distribution ", Advances in Applied Science Research, 2011, 2 (5):465-475.

- Winai BODHISUWAN, Nareerat NANUWONG, Chookait PUDPROMMARAT, (2016), " Parameter Estimation for the Length Biased Beta-Pareto Distribution and Application", Walailak Journal of Science and Technology (WJST), Vol 13, No 5.

التنزيلات

منشور

2024-11-10

كيفية الاقتباس

A.L. Noora Ali Azeez. (2024). بناء توزيع احتمالي ماكسويل مرجح جديد مع مقارنة معلمتيه. المجلة العراقية للعلوم الادارية, 12(50), 181–165. استرجع في من https://mail.journals.uokerbala.edu.iq:8443/index.php/ijas/article/view/2648