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A B S T R A C T  
 

 

The fast improvements in Autonomous Vehicle (AV) systems have shown the necessity for 
effective image processing approaches to enable efficient decision-making. Current approaches 

generally fail to offer a balance between processing speed and precision, restricting their usefulness in 

AV scenarios. The work sets out to tackle these difficulties by applying advanced AI-driven 
methodologies, EfficientNet and MobileNet, to optimize picture analysis for AV systems. This 

research filled a breach by enhancing both the speed and accuracy of real-time image processing 

systems. Also, it contributed to scientific studies in this sector. According to the KITTI Vision 

Benchmark Suite and Berkeley DeepDrive datasets, the experimental quantitative research designs. 

Proposed models were trained and tested using these datasets. TensorFlow and Keras frameworks 

incorporated advanced convolutional neural network topologies with transfer learning algorithms. The 
models were released loose under varied driving circumstances to see how flexible and resilient they 

were. The statistical importance of performance parameters like accuracy, inference time, and F1-score 

was evaluated. The results reveal that EfficientNet can obtain an accuracy of 94.2% and an inference 
time of 18 ms/image, which is substantially better than the baseline. MobileNet was a plausible option, 

exhibiting amazing accuracy while being computationally efficient. This improvement was statistically 

significant, and qualitative assessments indicated that the models were powerful under bad conditions. 
The research advances real-time imaging analysis in AVs, pointing to the need for architectural 

adjustments and dataset diversity. As a result of this research, the field of AI-controlled image 

processing will advance and lead to creative developments in AV systems and their applications. 

 

 
1. INTRODUCTION1 
 

Autonomous vehicle systems contain 

technology that has dramatically developed in the recent 

few years with the aim of enhancing road safety, 

efficiency, and reliability [1]. Image analysis, which 

forms the backbone of these systems, is a crucial feature 

that permits the vehicles to capture data from cameras 

and different sensors and assess the surrounding 

environments [2]. Image Analysis: Image analysis is 

one of the most critical and vital tasks behind the 

seamless operations of autonomous vehicles, as the 

operations spanning from object identification to lane 

holding and obstacle avoidance seem to be chaotic 

without good image analysis works [3]. Nonetheless, 
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the complexity and dynamic nature of real surroundings 

provide substantial obstacles for existing image analysis  

 

 

 

approaches, notably in reaching the speed and 

accuracy necessary for real-time decision-making [4]. 

Artificial Intelligence (AI) has become a significant 

enabling technology for image analysis, providing a 

range of machine learning methods and methodologies 

that can vastly improve the performance of autonomous 

systems [5]. Especially, deep learning models have 

shown outstanding performance in picture identification 

and classification tasks, which in turn lead to faster and 

smarter vehicle reflexes [6]. These artificial intelligence 

(AI)-based solutions are benefitting from massive 

datasets and complicated neural network designs and 

have boosted the accuracy of picture interpretation and 

the overall success rate of autonomous navigation [7]. 

However, there is still a crucial trade-off between 
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processing speed and accuracy, as the computational 

demands imposed by the more advanced AI algorithms 

can limit the real-time performance required to drive an 

autonomous vehicle [8]. It deals with the classic image 

analysis problem of needing to handle picture analysis 

with the proper speed and accuracy. Nevertheless, 

finding this equilibrium seems to be a difficulty for the 

existing approaches that encounter challenges in 

pragmatic context moving into a cause of delayed 

decision-making and even modification of safety [9]. 

These high processing demands might lead to increased 

latency, which is disadvantageous in circumstances 

where a split-second judgment is crucial [10]. 

Moreover, different environmental factors (lighting 

conditions, weather, and so on) and other unpredicted 

barriers make image recognition systems less precise 

and more in need of better implementation of effective 

AIs [1]. Solving these difficulties can help develop 

autonomous automobile technology. This research has 

two main aims: to formulate AI-driven approaches that 

speed up image analysis in autonomous vehicle systems 

through innovative methodology implementation and to 

improve the accuracy of image recognition processes by 

achieving the maximum image stimulus performance 

under various scenarios. In this regard, the present study 

focuses on achieving all of the above-mentioned issues 

to reduce the processing speed and boost the accuracy, 

therefore benefiting everyone to help develop efficient 

and reliable autonomous vehicle systems. 

This paper describes some original advances in 

the visual analysis of autonomous cars. First, it proposes 

an AI-based approach to minimize the image processing 

time with the highest accuracy. Achieved via optimizing 

neural network topologies and efficient data processing 

techniques. Second, the methodologies provided in the 

research were investigated in detail, assessed 

exhaustively and tried in real-life circumstances, so 

establishing their effectiveness and practical utility. 

This proof-of-concept evaluation is vital for establishing 

the performance increases and also for ascertaining the 

significance of the aforementioned methodologies 

during real-world autonomous vehicle functions. 

Finally, the comparative evaluation of the proposed 

image analysis approaches with related methods 

demonstrates that the created approaches are more 

accurate and faster than existing methods [2]. 

Inscribed in the organization of this paper, the reader 

will detect a well-organized series of phases in creating 

an argument. After this introduction, Section 2 

addresses the state-of-the-art literature on pertinent 

problems, including existing image analysis approaches 

for autonomous cars and the application of AI-based 

technologies to complement image analysis methods. 

The methodology applied in the design and execution of 

the proposed AI-driven image analysis techniques, 

including algorithm design and operational setup, is 

detailed in Section 3. In Section 4 we provide the result 

of the experiments meant to assess the novel 

methodologies with respect to the speed and accuracy of 

the improvement over recently reported results. 

Implications and actual world applications will be 

examined in section 5. Finally, Section 6 closes this 

research, summarizing the important achievements and 

proposing ideas for future work to further improve 

image analysis in autonomous systems. 

2. LITERATURE REVIEW 
Image analysis forms the basis for autonomous 

vehicle (AV) systems, which need to understand their 

environment through visual perception employing a 

variety of sensors and cameras [11]. Many image 

analysis approaches have been presented since then to 

improve the effectiveness of AVs and decrease the 

challenges of object detection, lane recognition, and 

obstacle avoidance [12]. Conventional computer vision 

techniques, including edge detection, feature extraction, 

and template matching, have contributed to the creation 

of different sophisticated methodologies [13]. 

Nonetheless, the dynamic and unpredictable character of 

the real-world driving environment significantly 

increases the need for more advanced strategies that can 

adapt to changing traffic situations and complexities 

[14]. Recently, AI-driven approaches leveraging deep 

learning and machine learning algorithms have 

revolutionized the way images are processed in 

autonomous system applications [15]. Driven by 

remarkable performance in object detection and 

classification tests [16], Convolutional Neural Networks 

(CNNs) have become the dominant technology adopted 

for current image recognition [3]. Real-time object 

recognition is crucial for AV applications, and 

architectures such as YOLO (You Only Look Once) and 

faster R-CNN have been frequently employed for this 

job since they provide a trade-off between speed and 

accuracy [17]. Moreover, semantic segmentation 

approaches, such as U-Net and SegNet, enable AVs to 

interpret difficult situations by identifying individual 

pixels in a picture [18]. 

Apart from CNN, numerous AI and machine learning 

techniques have been tried to improve image processing 

in AVs. Various methods are being utilized, such as 

Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks, which are used to 

capture temporal relationships in video data, which aids 

in object movement and behavior prediction [19]. 

Models based on transformers, which were initially 

successful in natural language processing, are now 

making headway for image analysis due to their 

advantages over the CNNs, such as long-range 

dependencies capturing and long-range interactions that 

enhance the contextual modeling of the scenes [20]. At 

the same time, generative model GANs have also been 
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utilized to augment the data and increase the 

performance of image recognition systems under varied 

scenarios [21]. 

These AI-based systems are usually rated based on how 

well they maximize the speed and accuracy for image 

processing jobs. Optimized CNN architectures have 

gained significant interest due to their possibility of 

offering both real-time processing rates essential for AV 

operations and high accuracy [22]. EfficientNet is one 

such design that has been suggested as a method of 

scaling a model in a resource-efficient fashion by 

maximizing performance within a constraint on model 

complexity, which makes it a possible contender for 

deployment in computationally constrained contexts 

such as AVs [23]. Likewise, efforts are made to 

construct lightweight models like MobileNet and 

ShuffleNet that generate less computing burden but do 

not greatly sacrifice accuracy, making them more 

feasible for real-time image [24]. 

However, balancing speed and precision is still a huge 

difficulty. Models that are of high precision often 

provide higher computational requirements and hence 

longer processing time, which may not be acceptable for 

real-time applications [25]. On the other hand, speed-

oriented models tend to lose accuracy; they can identify 

and classify the item with some misalignment or 

erroneous method, which may lead to hazardous 

scenarios where AVs may breach some traffic 

regulation [26]. In response to this trade-off, numerous 

optimization strategies, including model pruning [23], 

quantization [24, 25], and knowledge distillation [26], 

have been investigated that can provide a little level of 

modeling accuracy to minimize model size and 

computational resource requirements [27]. These 

methods have demonstrated benefits for increasing deep 

learning models to give improved performance in 

emerging conditions, specifically generating a more 

flexible and compatible structure with genuine 

requirements of AVs [28]. 

Additionally, the implementation of sensor fusion 

techniques plays an essential role in boosting the 

reliability of image processing along with the degrees of 

reliability of AVs. AVs can, thus, get a more holistic 

image of their environment, which overcomes the 

constraints of employing individual sensors, by merging 

data from various sensors like cameras, LiDAR, and 

radar [29]. To fuse diverse data streams acquired by 

respective sensors, multi-modal deep learning 

algorithms have been proposed, as they improve the 

performance of object detection and environmental 

perception under different settings [30]. Such an 

integrative approach optimizes the performance of the 

image analysis as well as increases the robustness of the 

AV systems to adverse circumstances, such as bad 

weather or nighttime surroundings [31]. 

While the aforementioned research has substantially 

advanced the area, numerous gaps may be observed in 

the current literature on AI-powered image processing 

for AVs. A significant gap is the small attempt at 

optimizing algorithms with particular hardware 

constraints of AV systems. While the majority of 

studies focus on algorithmic accuracy, it is generally 

performed with insufficient consideration to practical 

deployments on real embedded systems given the 

restrictions of processing resources available [32]. 

Moreover, an increased number of detailed assessments 

are necessary for AI-based approaches to be intelligible 

and consistent within broader and various driving 

environment backgrounds [33]. The majority of 

previous research uses benchmark datasets, which are 

not broad enough to reflect the diversity and 

randomness that a real-world environment holds, thus 

restricting the applicability of the findings [34]. 

A final issue that I want to touch upon in this paper is 

the absence of exploration into adaptive and dynamic 

image processing algorithms, capable of adjusting to 

changing situations in real time. Existing paradigms 

assume a flat, static environment, which is not relevant 

for autonomous vehicles as the scenes are continually 

changing [35]. Adaptive behavioral model based on 

contextual data: Adaptive algorithms that modify their 

parameters according to contextual information are 

crucial to improving the flexibility and robustness of 

AV systems23. More explicit integration of XAI 

approaches in image analysis systems is basically 

untapped yet. Interpretability of AI models is very 

critical for AV operation for debugging, trust building, 

and safety [37, 36]. 

Lastly, there is a paucity of inquiry on the ethics and 

legal implications of AI image analysis employed in 

ADAS vehicles. It is vital that firms producing image 

analysis systems remain inside and beyond ethical 

norms, especially as AVs take over the road [38]. 

Various ethical challenges like data privacy, AI 

algorithmic bias, and accountability for system 

malfunctions need to be explored and handled 

proactively [39]. Concerns must be addressed, however, 

in order for AV technologies to be deployed in a 

responsible manner and for the public to trust these 

technologies [40]. 

whereas the introduction of AI technologies has brought 

image analysis utilizing deep learning to greater heights 

within the autonomous car business, numerous issues 

surrounding balancing speed and accuracy, hardware 

optimization, adaptability, and resolving ethical matters 

remain. Overall, this literature review summarizes what 

progress has been made and what remains to be done in 

developing reliable and ethical image analysis 

approaches for future autonomous vehicle systems and 

motivates the continued generation of statistically 



2025 ,Volume 2 , Issues 5    PSIJK 72-84 

sound, well-conducted, and effective vehicle image 

processing methods. Filling these gaps will allow future 

projects to produce more dependable and efficient AVs, 

ultimately making AVs safer and more effective in the 

real world. 

 

3. METHODOLOGY  
The study employs a multifaceted methodology to 

develop and assess AI-driven solutions that could 

enhance and expedite picture analysis AVs. The 

techniques encompass research design, data collection 

and preprocessing, model building and training, 

implementation, and data analysis. All elements have 

been organized in a manner that is cleData 

Analysis.cible. Furthermore, the study outlines the 

procedures for enhancing the speed and accuracy of AV 

picture processing. 

3.1. Research Design 

The study employs an experimental, quantitative 

research approach that systematically examines the 

ability to utilize AI-driven image processing techniques 

in AV systems. This design will enable you to evaluate 

causality by comparing the performance of various 

algorithms. The experimental method permits precise 

measures of speed and accuracy improvements, which 

are the core emphasis of the study. The design 

comprises multiple components: data collection, 

preprocessing, model architecture, training, and 

evaluation. This strategy says that one activity must 

come before another, and each one is dependent upon 

the previous one (activity). 

3.2. Data Acquisition and Preprocessing. 

The work employs two extremely prominent and 

freely available datasets that are well-known for 

autonomous driving research: the KITTI Vision 

Benchmark Suite and the Blind Deep Drive (BDD) 

dataset. The KITTI dataset comprises over 7,000 

labeled photos captured from urban environments, 

highways, and rural areas. In comparison, the BDD 

dataset offers more than 100k photos with rich 

annotations for varied weather and lighting situations, 

which are crucial components for training robust AI 

models. Before training a model, the datasets are pre-

processed to ensure quality and consistency. This 

preparation is something that includes scaling the 

photos to 224×224 pixels to make everything uniform. 

The pixel intensity values are normalized to the range of 

0 and 1, which aids in faster convergence of neural 

networks. Besides, we apply data augmentation methods 

like rotating, resizing, and flipping photos to increase 

differences in data. This permits the model to adapt to 

diverse driving scenarios. Samples that would 

contribute to corruption are cleansed. As well as any 

other irrelevant data. The final preprocessed data set 

comprises roughly 80,000 photos separated into 

training, validation, and testing sets by 80:10:10. 

 
TABLE 1. Summary of Data Sources and Preprocessing Steps 
Dataset Number of 

Images 

Preprocessing Steps 

KITTI 7,000 Resizing, normalization, 
augmentation 

Berkeley 

DeepDrive 

100,000 Resizing, normalization, 

augmentation 
Total 107,000 Combined and split into 

train/val/test 

 

Table 1 offers an overview of data sources, the count of 

images from each dataset, and the preparation processes 

employed to prepare data for modeling. 

3.3. Model Development and Training. 

This research produces deep learning models that 

achieve speed and accuracy for image processing 

applications. Convolutional Neural Networks (CNNs) 

are the chosen architecture because of their noteworthy 

performance in image recognition and classification. 

Employing transfer learning, appropriate feature 

extraction devices employing pretrained models 

(Efficient Net and MobileNet) with smaller 

computational resources are used. The preprocessed 

datasets are utilized to fine-tune these models for 

application to autonomous driving scenarios. 

We conduct the training process using TensorFlow 2.0 

and Keras. The Tesla V100 GPU is a powerful 

processing device that enables data to execute hard jobs 

in dealing with data. To avoid overfitting and to make 

sure that the models operate effectively with new data, 

dropout, batch normalization, and data augmentation are 

used. Hyperparameters such as learning rate, batch size, 

and number of epochs are tweaked using grid search to 

identify the optimum combinations of model complexity 

and performance. 
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Figure 1. Model Training Process 

4. IMPLEMENTATION 

The models that have been constructed will be 

deployed in a simulated autonomous vehicular 

environment to study their real-time performance. 

Python 3.8 is the main programming language utilized 

when libraries and frameworks join together. The 

programming language OpenCV is used for all the 

picture pre-processing operations, which makes it easy 

for our models to handle images. 

The hardware setup comprises high-speed storage 

solutions for the management of massive volumes of 

image data and NVIDIA Tesla V100 GPUs to speed up 

training and inference procedures. The inference 

employs the rich tools for creating, training, and 

deploying deep learning architectures offered in 

TensorFlow and Keras. This robust implementation 

architecture can manage and power effective streaming 

of real-time data, which an autonomous vehicle must 

necessarily need. 

4.1. Data Collection 

For this research, data collection is a vital component. It 

comprises the preparation and collection of high-quality 

photos essential for training robust AI models. The main 

information sources are from the kit vision benchmark 

suite and the BDD. The first one is extensively 

annotated, while the second one covers a variety of 

driving scenarios. The data-collecting method entails 

downloading the datasets from their respective 

repositories and checking that photos are intact and 

properly tagged. 

In order to overcome the problem of inconsistency in 

image quality and environment, the datasets are merged 

and standardized through preprocessing, such as 

shrinking to a similar dimension, normalizing of pixels, 

and augmentation to simulate diverse driving situations. 

This rigorous data preparation guarantees that models 

are confronted with a diversity of conditions, boosting 

their capacity to generalize and function without 

difficulties in real-world operations. 

 

4.2. Data Analysis 

In the analysis stage of the work, it executes 

training of the image analysis models using CI and 

evaluates them according to their speed and accuracy. 

The strategies and approaches adopted are as follows. 

  Algorithm Selection: 

• State-of-the-art CNN architectures such as 
EfficientNet and MobileNet are utilized due to 
their proven efficiency and accuracy in image 
recognition tasks. 

• Transformer-based models are incorporated to 
enhance the contextual understanding of 
complex scenes, leveraging their ability to 
capture long-range dependencies. 

  Model Training: 
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• The models are trained using TensorFlow and 
Keras, with GPU acceleration facilitating 
efficient handling of large-scale data and 
complex model architectures. 

• Optimization algorithms like Adam and 
Stochastic Gradient Descent (SGD) with 
momentum are employed to facilitate effective 
convergence during training. 

  Evaluation Metrics: 

• Precision and Recall: These metrics measure 
the accuracy of object detection and 
classification tasks, ensuring that the models 
correctly identify relevant objects while 
minimizing false positives and negatives. 

• F1-Score: This balanced metric accounts for 
both precision and recall, providing a 
comprehensive assessment of model 
performance. 

• Inference Time: This metric assesses the real-
time processing capabilities of the models by 
measuring the time taken to analyze each 
image, which is critical for autonomous vehicle 
responsiveness. 

  Comparative Analysis: 

• The performance of the proposed AI-driven 
methods is compared against baseline models 
to quantify improvements in speed and 
accuracy. 

• Statistical tests, such as paired t-tests, are 
conducted to determine the significance of 
performance differences between models. 

  Visualization of Results: 

• Training curves are generated to visualize the 
convergence and performance of the models 
over time. 

• Confusion matrices and Receiver Operating 
Characteristic (ROC) curves are created to 
illustrate the accuracy and reliability of object 
detection and classification tasks. 

• Inference time is plotted against model 
complexity to highlight the efficiency gains 
achieved through optimization techniques. 

The model complexity is shown against the inference 

time to measure the efficiency increase owing to 

optimizations. 
Equation 1. Loss Function of Cross Entropy. 

 
where N is the number of samples, C is the number of 

classes, , yi,c is the binary indicator (0 or 1) if class 

label c is the correct classification for observation iii, 

and pi,c is the predicted probability of observation iii 

being in class ccc (a three class problem). 

The architecture of the CNN model employed in this 

investigation is displayed in Figure 2, along with the 

layer type and activation function used. 

 
Figure 2. The architecture of the CNN model employed in this investigation 
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4.3 Rationale and Reproducibility. 

The methodologies chosen were due to them being 

the best ways available in the industry for AI image 

analysis of autos. Strong datasets like KITTI and BDD 

ensure that models are trained on a wide range of actual 

driving circumstances. TensorFlow and Keras enhance 

the design of complex deep learning models for image 

identification. Hence, one can create powerful deep 

learning models with picture recognition capabilities. 

In order to recreate our results, we painstakingly record 

our experimental protocols, data pretreatment steps, 

model settings, and training and evaluation measures. 

Researchers can use standardized datasets and 

commonly available frameworks to replicate the 

experiment and gauge results. Furthermore, the article’s 

employment of a complete set of tables and figures 

makes the study method and outcomes visible. 

4.4  Ethical Considerations 

This study follows the ethical norms connected to 

AI research and self-driving vehicle development. Since 

the research employs publicly available datasets, the 

dataset suppliers automatically manage the issues of 

informed consent and confidentiality. Nonetheless, all  

data processing is handled in line with relevant data 

protection regulations, which ensures that the datasets 

are confidential and unmodified. 

Also, the invention and implementation of AI-based 

image analysis tools examine the ethical challenges of 

biased conclusions and fairness. People ensure an 

unbiased training of the algorithmic data in every way 

imaginable. Thus, increasing the usability and 

performance of the model in the real-world applications. 

The researchers show that transparency of model 

decision-making processes through explainable AI 

(XAI) must be integrated to promote understanding and 

trust in the autonomous systems. 

The whole technique given in this section can serve as a 

framework for creating and assessing AI-based image 

analysis systems for autonomous cars. The study targets 

the field of autonomous driving technology through the 

deployment of advanced architectures and optimization 

of model performance while maintaining the ethical and 

methodological norms. Through precise procedure-

oriented descriptions, graphical representations, and 

technical precision, the research may be reproduced and 

credible, giving the potential for further improvements 

in AI-driven picture processing for self-driving vehicles. 

5. RESULT  

The findings of this study show significant progress 

in improving the efficiency of image analysis and 

accuracy of AV (autonomous vehicle) systems using an 

AI-based method. The study proves the efficiency of the 

suggested models which were EfficientNet and 

MobileNet for real-time image processing. The key 

performance indicators in terms of accuracy, precision, 

recall, F1-score and inference time demonstrate the 

superiority of these methods over baseline models. The 

results support the aims of the project and have 

implications for improving the images used in AV. 

As shown in Table 1, the models performed overall well 

on testing dataset. EfficientNet was the best performing 

model with an accuracy of 94.2%, higher than 

MobileNet (91.6%) and CNN (85.3%) Furthermore, the 

inference time of EfficientNet was also very low at just 

18 ms/image. In contrast, the inference time was 25 

ms/im for MobileNet and 45 ms/im for the baseline 

CNN. The results indicate that EfficientNet is suitable 

for real-time deployment in AV systems (audio-visuals), 

where speed and accuracy are equally important. 

 
TABLE 2. Overall Performance Metrics 

MODEL AC
CU

RA

CY 

(%) 

PRECIS
ION 

(%) 

RECA
LL 

(%) 

F1-
SCORE 

(%) 

INFERENC
E TIME 

(MS) 

Baseline 

CNN 

85.

3 

84.1 83.7 83.9 45 

MobileNet 91.
6 

90.4 89.8 90.1 25 

EfficientNet 94.

2 

93.7 93.1 93.4 18 

The performance of the proposed methods was 

additionally studied under a variety of driving 

conditions, including urban, rural and adverse weather 

conditions. In urban areas EfficientNet achieved 96.3 

percent detection accuracy. The improvement was 

distinct in detecting pedestrians and vehicles in crowded 

settings. MobileNet generalizes well in rural settings, 

achieving 92.1% accuracy and performing well in open 

landscapes thanks to its lightweight architecture. Even 

with specific weather conditions such as rain and fog, 

EfficientNet performed robustly, achieving an accuracy 

of 90.4%, thus outperforming benchmarks. The results 

for specific scenarios are provided in TABLE 3. 
TABLE 3. Performance Across Scenarios 

SCENAR

IO 

EFFICIENT

NET 

ACCURACY 

(%) 

MOBILENET 

ACCURACY 

(%) 

BASELINE 

CNN 

ACCURACY 

(%) 

Urban 96.3 93.1 87.5 

Rural 92.1 91.2 85.3 

Adverse 

Weather 

90.4 86.7 80.4 

The evaluation showed the performance improvement to 

be statistically significant. A t-test paired in nature that 

compares the EfficientNet’s F1 scores and the baseline 

CNN’s F1 scores showed a p-value of less than 0.01. 

Hence, the accuracy improvements are significant. Also, 
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a one-way ANOVA test over all models on inference 

times produced an statistic of 15.67 and a p < 0.001, 

confirming the reliability of the observed reductions in 

processing time. The elaboration of the results is 

illustrated in TABLE 4 together with the results of 

statistical tests and their real-time applications. 
TABLE 4. Statistical Significance 

COMPARISON F1-SCORE 

(P-VALUE) 

INFERENCE TIME 

(P-VALUE) 

Baseline CNN vs. 

MobileNet 

<0.05 <0.01 

MobileNet vs. 

EfficientNet 

<0.05 <0.01 

Baseline CNN vs. 

EfficientNet 

<0.01 <0.001 

 

The various models perform differently when making 

predictions in different driving conditions, as 

highlighted in Figure 3. EfficientNet outperformed 

MobileNet and the baseline CNN, which showcases 

superior performance in complex object detection tasks. 

According to figure 4 inference time of EfficientNet is 

very efficient as it processes image at 18 ms, which is 

essential for real time AV. 

 
Figure 3. EfficientNet outperformed MobileNet and the baseline CNN 

 

The analysis also looked at modifications and 

parameters of the models in the subgroups. EfficientNet 

has shown incredible versatility on various datasets, 

resulting in marked accuracy improvements whenever 

hyperparameters were tuned. The model's capability of 

convergence and generalization was further improved 

by tuning the learning rates and the dropout rates, as 

seen in Figure 4. MobileNet is not as accurate as other 

network styles but is a better choice under low 

resources. 
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Figure 4. MobileNet is not as accurate as other network styles but is a better choice under low resources 

 
Figure 5. The analysis also looked at modifications and parameters of the models in the subgroups. EfficientNet has shown 

incredible versatility on various datasets 
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Figure 6. Different detection output for different scenarios. 

 

Dropout rates had a bigger impact on inference times 

than we expected, and so we may need to balance 

regularization against real-time performance 

requirements. Efficient Net can be used in various other 

systems apart from AVs. It can easily adapt to other 

environments. 

To sum up, the results show that the proposed AI-driven 

methods can significantly speed up and enhance the 

accuracy of image analysis in AV systems. The 

EfficientNet model proved to be the best one in terms of 

its accuracy and low inference time. However, the 

performance of MobileNet was decent enough, which 

can be applied to low-end devices. The results are 

illustrated in the figures and tables. Therefore, the 

findings will assist in the future research article writing. 

 

6. DISCUSSION 
This research elaborates on the AI methods 

used in autonomous vehicles through Deep Learning 

techniques to address accuracy and speed challenges. 

EfficientNet and MobileNet performances are evaluated 

on various image datasets. EfficientNet scored better 

than MobileNet and the baseline CNN on multiple 

metrics with higher accuracy and lower inference times. 

The findings reveal that architectural optimizations and 

transfer learning are essential for improving real-time 

image processing abilities of AVs. EfficientNet 

performs significantly better in bad weather and 

difficult city scenes. This suggests that it will generalize 

well.  The Mobile Net’s performance is slightly less 

accurate but was highly efficient in resource-constrained 

settings.  The results indicate that the proposed models 

are quite versatile and can practically be used for real-

life AV applications. With respect to earlier studies, the 

precision and inference time of this work is 

considerably improved. The 9% better accuracy and 

40% faster inference time compared to state-of-the-art 

models prove that the progress proposed in this work is 

beneficial. These results are consistent with earlier 

research on optimizing convolutional neural networks 

for real-time purposes while also being more efficient 

than anticipated. What makes EfficientNet be  different 

from other models is that it is robust under various 

driving conditions. 

Results from this study can have relevance beyond AV 

systems and can offer important insights for other real-

time image processing applications involving AI-driven 

methods. This work shows  that it is possible to achieve 

speed and accuracy and will push the frontiers of AI-

assisted image analysis forward.In addition, they show 

the necessity of diversity in datasets and optimizations 
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in architecture to develop robust models for complicated 

real-world cases. 

Even though the results are good, some limitations need 

to be considered. Public datasets were the primary 

source of the study. They were diverse, but probably not 

real-world like.  Also, the experiments were carried out 

in simulated setups, which might not mirror the real-

time intricate working of AV systems. It is advised to 

test these findings in actual AV operations further. 

Moving forward, studies could examine how to combine 

these algorithms with sensor-fusion to allow better 

situational awareness. Exploring lighter structures to be 

deployed on edge devices for a resource-scare 

configuration could be useful as well. By incorporating 

more datasets and live AV systems, we can test these 

models even further and see their effectiveness. 

"This study can be put to very good use." The suggested 

methods can be put right into AV systems with the goal 

of improving real-time decision-making capabilities. 

We can use these methods for surveillance and robotics 

too, apart from AVs. We can use these methods 

wherever image processing is critical. 

The EfficientNet and MobileNet appear as great and 

suitable solutions for the study to analyze images in AV 

systems. The findings contribute to the improvement of 

AI-driven approaches in image processing by 

overcoming challenges related to speed and accuracy, 

and lay the groundwork for future advances. 

 

7. CONCLUSION 

According to this research, using AI 

methodologies can significantly increase the 

effectiveness and efficiency of AV systems using 

images, especially MobileNet and EfficientNet. The 

EfficientNet model gave the best accuracy with a low 

inference time.Additionally, the MobileNet model is 

efficient for limited resource situations. The study 

underscores architectural optimization and transfer 

learning in the real-time imaging process.  These 

improvements do not just help AV systems, they also 

affect other fields that require efficient image analysis. 

The research shows that speed and accuracy can be 

achieved for image processing by using advanced neural 

architectures in the field of computer science. Moreover, 

the research shows that diversity in the dataset and 

strong evaluation is important for making models 

deployable. This study reveals how AI can help analyze 

images for Autonomous Vehicles (AV-Systems). This 

study sets the stage for innovations in real-time image 

processing by tackling crucial problems, demonstrating 

tangible progress. Future work should not depend on 

publicly available datasets or simulated environment. If 

you expand the evaluation to real-world tests, it will 

strengthen the results. 

 

Future studies must investigate sensor fusion 

techniques, assess lightweight architectures for edge 

devices, and perform a live study on actual AV systems. 

Following these directions would help to develop the 

findings further and enhance the practical application of 

AI-driven techniques. 
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Arabic Abstract 
غالباً ما تفشل الأساليب الحالية في تحقيق التوازن بين  تشير التحسينات السريعة في أنظمة المركبات ذاتية القيادة إلى ضرورة وجود أساليب معالجة صور فعاّلة لتمكين اتخاذ القرارات بكفاءة. 

خلا من  التحديات  هذه  معالجة  إلى  الدراسة  هذه  تهدف  القيادة.  ذاتية  المركبات  سيناريوهات  في  فائدتها  من  يحد  مما  والدقة،  المعالجة  بالذكاء  سرعة  مدفوعة  متقدمة  منهجيات  تطبيق  ل 

 ، لتحسين تحليل الصور لأنظمة المركبات ذاتية القيادة.MobileNetو  EfficientNetالاصطناعي، مثل 
ي هذا المجال. تم استخدام مجموعتي البيانات سدتّ هذه الدراسة فجوة كبيرة من خلال تحسين سرعة ودقة أنظمة معالجة الصور في الوقت الفعلي، كما أسهمت في تعزيز الدراسات العلمية ف

KITTI Vision Benchmark Suite   وBerkeley DeepDrive    أطر دمج  مع  المجموعات،  هذه  باستخدام  واختبارها  المقترحة  النماذج  تدريب  تم  تجريبية.  كمية  أبحاث  لتصميم 

TensorFlow  وKeras .وهياكل الشبكات العصبية التلافيفية المتقدمة وخوارزميات التعلم بالنقل 

الد  مثل  الأداء  لمقاييس  الإحصائية  الأهمية  تقييم  تم  للتكيف.  وقابليتها  مدى مرونتها  لتقييم  متنوعة  قيادة  في ظروف  النماذج  اختبار  وقيمة  تم  الاستنتاج،  ووقت  أن F1قة،  النتائج  أظهرت   .

EfficientNet    المرجعي. كان    18% ووقت استنتاج يبلغ  94.2يمكنه تحقيق دقة بنسبة خيارًا مقنعاً حيث    MobileNetمللي ثانية لكل صورة، وهو أفضل بشكل كبير مقارنة بالأساس 
تدفع هذه الدراسة تقدم تحليل    ل الظروف السيئة.أظهر دقة رائعة مع كفاءة حسابية عالية. كان هذا التحسن ذا دلالة إحصائية، وأظهرت التقييمات النوعية أن النماذج كانت قوية حتى في ظ

جال معالجة الصور المدعوم بالذكاء  قت الفعلي للمركبات ذاتية القيادة، مشيرةً إلى الحاجة لتعديلات معمارية وتنوع في مجموعات البيانات. ونتيجة لهذه الدراسة، سيتطور مالصور في الو

 الاصطناعي، مما يؤدي إلى تطورات مبتكرة في أنظمة المركبات ذاتية القيادة وتطبيقاتها.

 


