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The objective of this paper is to construct a new subclass of univalent analytic functions
using integral operator inside an open unit disk U . The method for proving these theorems, which are
utilized to derive new findings on this topic, relies on the Lemma 1.1 and Lemma 1.2 that are stated in
this study. The new findings of coefficient bounds for new subclass were used to obtain the theorems of
The Growth and distortion , Extreme points and Hadamared product of functions. The novelty of this
work adds to the body of knowledge already available on the convolution of univalent analytic function
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1. INTRODUCTION
Complex analysis is a rich and multifaceted

field with roots in the eighteenth century. It has
applications not just to other disciplines of analysis but
also to other fields of mathematics and science as a
whole. The theory of conformal representation and the
geometric function theory of analytic functions are two
significant areas of complex analysis. The latter is
developed at the turn of the twentieth century and deals
with geometrical characteristic of analytic functions; it
is still important area of study today. The writings of
Bieberbach in 1916 [1] about coefficient problem of
univalent analytic functions are among the first
noteworthy studies that address subjects from this realm.
In k —dimensional complex coordinate space, he was
able to drive certain results regarding the range of
possible values at the point d,, d,, -+ dj,. The best value
of n, isk where S(w) = @ + d,w? + - d@* + -,
|di| < ny; this equality holds if and only if S(@w) =

(1_’;2 or one of its rotation. This statement is known as

the Biberbach conjecture. In 1923 Lowner [2] proved
the Biberbach conjecture for n = 3. Finally, in 1985 De
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Branges [3] proved the Biberbach conjecture for all
coefficients with the help of hypergeometric functions.
This affirmation elevated the field of geometric function
theory to one of the ever growing areas of possible
research. Since the Biberbach conjecture was difficult to
settle, several authors have considered classes defined
by geometric conditions. Notable among them are the
classes of starlike functions, convex functions and
closed to convex functions. This problem persisted as a
difficulty for many years, spurring the creation of
intricate and new research techniques that laid the
groundwork for the subsequent production of hundreds
of articles on the subject. In the area of coefficient
bounds for univalent analytic functions on unit disk,
there are two research gaps. The first is numerical and
computational in nature. As computational tools become
more powerful, effective numerical method for
computing coefficient bounds must be developed. This
can involve using optimization techniques to enhance
the bounds, which will help us understand the geometric
properties of univalent function better. The second area
of research gap is the extension of the study of
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coefficient bounds to univalent analytic functions in
higher-dimensional spaces, like the unit ball or unit
polydisk in C™. The first research gap is the subject of
this paper, which aims to create a new subclass for this
topic and apply an integral operator technique to
improve the coefficient bounds. Now, let M be the class
of functions given by

S(@) = w + Z d, w*, (1.1)
k=2

Which in the open unit disk U = {w € C: |w| < 1} are
analytic and univalent

If Sisgivenby (1.1) and T is defined by

T(w)=w+ ) b, @, (1.2)
kz:z "

is in M, then the convolution (Hadamard product) of S
and T in U is defined by

(S*T)(w) =w + Z dy b, (1.3)
k=2

For S in M is starlike of order o(0 <o <1) if

Re {w:}> o and is convex of order ¢ if Re {1 +

ZD_SII

S } > p, respectively symbolizes by S € S; (¢) and
S € Ky, (o) for |w| < 1.

For S € M, the following integral operator that
follows was defined by Al-Shagsi[4]:

L5 = (14 68)d,(8;w) * S(w)

A+ s 1
B O)) fot‘s tog (;)
>1,wel) (1.4)

-1
S(w) dt,

(5>0,¢

Where T standarts for the usual gamma function,
®,(6; @) is the well-known generalization of the
Riemann-zeta and polylogarithm functions, or the sth
polylogarithm function, given by

D,(8;m) = Z *+0)
k=2

Where all terms other than k + & = 0 is eliminated.

Also, the Koebe function is ®_; (0; @) = Z?=1(k%)e

It can be said that the series expansion of the operator
LES (@) given by (1.4) have the following expansions:

- 1+ 6\
L%S(W) =w + Z <m) dkmk
k=2

A new subclass D(6,¢,y,t,€) of S € M is now
defined, and it meets the conditions listed below:
LES(w) ,+(1+2y)117 L5S (@) ”+ym2 LES(w)
e 155@) tszpm{isim) () ")
(L%S(m)) +VZ(L§§(ZD'))

nr

nr

( Lf;S(w)>,+(1+2y)w(L§§(w)>”+yzz (L%S(m))

( Lf;S(w)), +yz(L§§(w))”

—1|+e€

(1.5)
(6>0,¢>1,1>00<e<10<y<1lwel)

Univalent functions for various subclasses and
subjects were examined by several authors, such
(51, 161,171,181, [9], [10][11], and [12].

The current study aims to develop new results
regarding the characteristic of the geometric function
of SeM in D(,4,y,1,€) by applying the two
lemma mentioned below:

Lemma(1.1)[13]: Let Y = p + iq and o is real number
then Re(Y) =o if and only if |Y—-(1+0)|<
Y + (1 —o)l.

Lemma(1.2)[13]: Let Y =p+iq and o,y are real
numbers then Re(Y) = o|Y — 1|+ y if and only if
Re{Y(1 + ce'?) —ge'?} > y.

2. COEFFICIENT ESTIMATES
The next theorem provides us with a necessary and
sufficient condition for S € D(6,4,y, 1, €)

Theorem(2.1): Let S be defined by (1.1),then S €
D(5,4,v,B,¢) ifand only if
S k(=€) + tlk — D)1 +y(k ~
¢
D) de<(1-e) 2.1)

k+8
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where
6>0>1,1200<e<10<y<1l,welU

Proof: by (1.5), we get

nr

( Lgs(m))’+(1+2y)m(L§s(m))”+ym2 (hs@)
e ! n =
(L%S(w)) +yw(LgS(w))

! n nr
(ths@) +a+2no(ihs@) +yo?(Lhs@)
7 77 —1|+e€
(LgS(w)) +yw(L§S(w))
Lemma(1.2) then give us
! n nr
(ths@) +a+2no(ifs@) +yo?(Lhs@) a
+

¢ ( LgS(w)),ﬂ/w(LgS(w))”

Te’?) — ‘rew} >e€

—1 <9 < m, orinthe same way,

(( LgS(w)),+(1+2y)w(LgS(w))”+yw2 (L%S(w))rn)(1+rew)
Re

( LgS(w))’+yw(L§§(w))”
Tew(( Lgs(w))’+yw(1,§s(w))”>
( LgS(w))l+yw(L§S(w))”

€ (2.2)

Let

[(2 )T, k(1 — e+ [ +y(k — D] (“5) dkwk‘l] +

k+8

wet® [5G = DI+ - D] (22) deart]

>(2-€) -2 zk(l—e+k)[1+y(k—1>](““) dlw|
TR kel = DI+ vk - D] (22 dy ot
Also

|F(@) -1+ e)E(@)| =

1+ 7, {1+ (1 + 200 — 1) +y (e — D - 2} (22) dkwk-l] (1+7e?) -

k+6

vet? [ 14 T2 k{1 + 7k - 1) (=) 4y 1] -

(140 [1+ T2l + yk(k = D) (£ gkt

[( ) + X, k(k — (1+ )L+ y(k — 1)] (”5) dea| +

k+8
1468

d w.k—l
k+8) k

ei® [Ek=z k(k — D[1 +y(k — 1)] (
<
e+ Y, k(k—1+e)[1+yk—1)] (

T8, k(e = DI +y(k - D] (22

1+6
k+68

) il

) dylwl -t +

Consequently

|F(@) + (1 - e)E@)| - |F(@) - (1 + )E(w@)| =

F@) = (( Lf;s'(w))' +(1+2))w (Lﬁ;s(w))” +yw? (Lfgs(w)) )(1 e ) — T 2k(k — )1 + y(k — 1)] (1+6) dy || —

et (( L%S(w))’ +yw (Lf;S(w))”)
and E@) = (L5S@)) +yo (LiS@))

Lemma(l.1) states that (2.2) is equal to

|[F(w)+ (1 —€e)E(w)| = |F(w) — (1 + €)E(w)| for
0<e<1

But

|14 B k(1 + (4 + 20 = 1) + 70 - DG - 2) (&2)g

re? |1+ 32 (470 DY () 40 -]+

k+6.

(1-e) [1 + Zieofk + vk (k — 1)} (1+§) i@ ]

k+68
1+6

T ¥, 2k(k — D1 +y(k = 1)] (m) di || > 0

That is the same as

146
k+6

S k(U= &) + Bl — D)L+ (e~ DI (22) g < (1 - )

Conversely, if (2.1) is true, then we need to
demonstrate

wk‘l] (1+7e?) -
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P
\ wa(L§§(w)) /

Teiﬂ(( Lgs(m))’+ym(1fé§(m))”>

Re 7 7
( Lg§(m)) +ym(Lg§(m))

When selecting values for @ on the positive real axis,
where 0 <@ =r <1, the inequality shown above
decreases to

Re {(1 ee“’)+2k 2 ((k ee“g)+ﬁ(k 1)3“9)[1+y(k 1)](;:‘;) drk_l] S

1438 (k+yk (k- 1))(;12) dprk-1

Since Re(—e™) > —|e™| = —1, the inequality above
becomes

146

Re {(1 +X, k((k-e)+T(k—1))[1+y (e~ 1)](k+8) agrk- 1} >0

14322 (k+yk (k- 1))(;2) aprk-1

Letting r — 17, the intended conclusion is reached.

Corollary (2.2): Let S(w) € D(8,4,y,71,€) , then

¥, dy < -9 (2.3)

2((2-e)+7)[ 1+y](:g)

and

Sy ey < ———F—— @4)
(C-o+1)[1+v](355 6)

Next, as seen below, the sharpness is satisfied from(2.3)

(1-€) k

k((k—€)+T(k—1))[1+y (k- 1)](,1;2)

T(w):w+2§°2

3. GROWTH AND DISTORTION THEOREM
Here is the growth and distortion theorems for S €
D(8,4,y,T, €) that can be obtained

Theorem(3.1): Let S(w) defined by (1.1) be in the
subclass D(8, 4, y, 1, €), then

r— e 2 < |S@)| <7+

2(2-)+0)1+y)(2ry)

2+68
(1-¢) 2

£
2(2-e)+7)[1+71(2)

lw| =r < 1.

For the function S(@) given by
1-o ,

w*e,
146\
2((2 - E) + T)[l + ]/] (m)
the result is sharp.

S(w) =w +

Proof: Let S(w) € D(4,74,y,1,€) then by(2.3) in
80rollary (2.2), we have

[oe]

(1-e)
e = 1+6\
k=2 2((2 - E) + T)[l + ]/] (m)

Hence

IS@)| < lo| + Xz di lol* =7+ 12 Ei, dy <

0y (3:2)
2((2-e)+71)[1+y] (2+5)
Similarly
IS@)| 2 o] = T, di lol* =1 —r? X, di 2

r— -9 > 12 (3.3)

2((2- e)+r)[1+y](;:g)

from bound (3.2) and (3.3), we get (3.1). m

Theorem(3.2): Let the function S(w) defined by (1.1)
be in the subclass D(4, ¢, v, T, €), then

1— 9 r<IS@I<1+
(e-o+0)1+v](355)
a0, (3.4)
(2-e)+7)[1+7] (:—6)

lw| =7r < 1.
For the function S(w) given by

(1-¢e) 2

110y
((2 —e)+ T)[l +v] (“—5)

S(w) =
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the result is sharp

Proof: Let S(w) € D(6,4,y, 1, €) then by(2.4) in
Corollary (2.2), we have

(1-e
- k2
k=2 (- +1)[1+7] (%)

Hence

IS'(@)| < |11 + Xpo, kdy |[w® |1 =1+

rYe kd, <1+ o (3.5)

(2-e)+1)[ 1+y](;:g)

Similarly

IS'(@)| = 1] = X, kdy lw|Ft =1 -

rye, kd =1 - a2
(2-e)+1)[1+y] (2+6)

(3.6)
from bound (3.5) and (3.6), we get (3.1). m

4. EXTREME POINTS

The extreme points theorem for S € D(6,4,y, 1, €)
is obtained in the following theorem
Theorem(4.1): LetS,(w) = w and

Sy(@) =@ +

(1-¢)
k((e—€)+T(k—1))[1+y (k— 1)](};2)
then S € D(6,4,y,t,¢€) ifand only if it is able to be

stated as

swk, fork = 2,3, ...

S@) = ) % Si(@)
k=1

where (7, 20and Y2, T, =1 or1 =T+ Y2, )
proof: Let
S@) =Y T Sp(@) =@ +

o (1-e)
Zk: 148 fg;{wk
k((k=e)+e(k-1)) (147 (=D (555)

then, from Theorem(2.1) , we obtain
S k((k =€) + 7k — D)1 +y(k - D] (22)" x

(1-e)
: way To=0-eXe, %=

(k=€) + (=) [1+y (=D (1 55
1-90-7)=s0-a

It follows that S € D(6,74,y,1,€) in light of
Theorem(2.1) Conversely, let S € D(6,74,y, 1, €) then

(1-€)
dk = 1+68
k(=€) +T(k—1))[14+y (k- 1)](k+5)
by setting
?
k((k—€)+t(k-1))[1+y (k-1 1+8
- ((k=e)+z(k—1))[1+y (k—D](1r5) do fork =23, .
(1-¢)
and
T=1-)7
k=2
then
S@)=w+Y¥r,dio* =w+
il a9 2 T w*

k(=€) +7 (e~ 1)) 14y - 1)](,1;2)

=T+ Z TiSi(@) = Z TSi(@),
k=2 k=1
this complete the proof.m

5. HADAMARD PRODUCT
LetS; € M given by

S;(@) =@ + Z di; @,
k=2

j=12 weU (5.1)

Then the Hadamard product of S; € M for j = 1,2 is
defined by

[} 2
S sH@ =w+ ) ([ [des |
k=2 \ j=1

The following theorem includes one of our main
findings.

Theorem(5.1): If S;(@) € D(8,4,7,7,¢;) for j =
1;2’ then (Sl * SZ)(w) € D((Sl 'gl 'V; T, 1;0)

as well as

=12(1 —¢;)(t+2)

[1+y1(33) ((n” 2(2- e,)+f)) M=7(1-¢))

P<1-

Proof: In order to prove (S; *S,)(w) €

D(6,4,y,t,¢) itis enough to show

(k((k=e)+e0e=0) a4y Ge-D) (55
(1-¢5)

Y=z ) )dk,j <1 (5.2)
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For j = 1,2, the Cauchy-Schwarz inequality is used to
get

D=1 +y(k -

(k—ej)+
D] (“6){ [ s Mdk,j <1(53)

K+ j=1 (1-a))

To prove p = 2, our task is to determine the largest ¥
so that

(k((k—l/))ﬂ'(k—l))[1+y(k—1)](%)€>
ZIT:Z (1_1/}) k,j S
1 (5.4)
Alternatively, it is equivalent to
Vi <

_— \/(k(]’[?::f(k—e]-)+r(k—1)>>

= (5.5)

(k(Ge=p)+7(-1))) ,Hﬁ-’;f(i—ej)
Moreover, that is
Vi 1dr2 <

(1-1) - (k((k—ej)+‘r(k—1))) 56)
(k((k=p)+1(e-1))) |7 =1 (1-¢)) '

Finding the largest ¥ requires us to go beyond (5.3) in
the following manner

(k(Ge=p)+(c-1)))

= <[1+yk-

which is the same as

Pp<1-—
-7 (1-€)) e (k-1 +k)

2 _ =
[1+y (k-D)](1r2) ((l’[?;lz(k—ej)+r(k—1)>>—]'[5.'=_12(1—ej)

p=1-

727 (1-€)) (e(k-D+k)
e[l
[y G-I (E3) <(n§.’;f(k—e,-)+r(k-1))>_

M- (1-¢))

(5.8)

Let us now assume that
ok)=1-
027 (1-¢)) (k=1 +K)
o)
[y Ge-D] () <(n7;f(k—ej)+f(k_1))>—

M- (1-¢5)

(5.9)

Since ®'(k) = 0 for (k = 2) these produces

Y<b2)=1-

M- (1-¢/)@+2)

() (02e-ep+) -2 Ge)

(5.10)

thus, this theorem’s proof is finished. m

6. CONCLUSION

In the present paper, a new subclass of univalent
analytic function convolution with integral operator on
an open unit disk is calculated the coefficient bounds,
Growth and distortion theorems. Extreme points and
Hadamared product are also obtained for this new
subclass. The application of differential equations of
order m may benefit from the generalization of this new
subclass to a new subclass of multivalent analytic
functions that involve a higher derivatives operator in
the future.
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