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A new probability distribution named Truncated Rayleigh Odd Weibull Inverse Exponential
distribution that extends the traditional inverse exponential distribution is proposed. The essential
statistical properties including moments, quantile function, linear representation, measures of
reliability, entropies, and reliability stress strength model are derived. The unknown three parameters
are estimated with the method of maximum likelihood and a simulation study is introduced to examine
the accuracy of the estimates. Two applications based on real-life datasets - medical and engineering -
are considered. Due to its flexible features, the new extended distribution is preferable to number of
well-known comparable models.

1. INTRODUCTION

Statistical data modeling is a crucial part of
statistics that has drawn the attention of many
researchers. A suitable statistical model is necessary for
the accurate actualization of the data when modeling
real-life data in various fields such as economics,
reliability analysis, engineering, environment, biological
investigations, and medical sciences. However, there are
still issues when real-life data does not fit any of the
conventional probability models. Indeed, statistical and
applied researchers have expressed a strong interest in
developing new extended probability distributions that
are more adaptable to data modeling. The literature
describes numerous methods for extending well-known
distributions. One of the most prevalent approaches is to
think about distribution generators [1,2].

For the generator (G) approach adding
parameter (s) to the well-known distributions may
introduce new modified/or extended distributions with
high flexibility in data-driven modeling of real-life
phenomena. In the literature, many generator families of
probability  distributions with  several desirable
properties have been proposed. A summary of the
varied and useful proposed families includes the
Marshall-Olkin-G [3], beta-G [4], Kumaraswamy-G
[5], gamma-G [6], exponentiated generalized-G [7],
logistic-G [8], Weibull-G [9], truncated Fréchet-G [10],
Gompertz-G [11], generalized inverse Weibull-G [12],
truncated general-G [13], exponentiated truncated
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inverse Weibull-G [14], and recently truncated Rayleigh
odd Weibull-G [15] to the bounded interval [0,1]. For
more families and details, the interested reader may
refer to [14] and [15]. For lifetime data analysis, the
exponential distribution is one of the most often used
distributions related to the scale family of distributions
due to its simplicity and mathematical viability.
However, in real life, rarely come across engineering
systems that have a consistent danger rate throughout
their lifetime. As a result, it appears reasonable to
assume hazard rate as a function of time which led to
the development of an alternative modified/extended
model for lifetime data analysis [16].

The inverse exponential (IE) distribution is an
alternative modified version of the traditional
exponential distribution proposed by [17]. But this
modified version also has a limitation which is its
inability to effectively represent various skewed
datasets. The goal of this paper is centered around
introducing a new version of the IE distribution based
on employing the truncated Rayleigh odd Weibull-G
(TROW — G) family. The new extended version is
called truncated Rayleigh odd Weibull inverse
exponential (TROWIE) to the bounded interval [0,1].

For x>0 and G(x;w)=1-GC(x;w),
suppose G(x;w)and g(x;w) = dG(x; w)/dx are the
cumulative distribution function (CDF) and probability
density function (PDF) of a baseline distribution with
parameter vector w, then the CDF of TROW — G family
is [15]
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The corresponding PDF of (1) is defined by

0p GP1(x) _(CW)’
fO) =179 TP ()

o)) @)
(1 - e—(G(x)/G(x))ﬂ)e—§<1—e (eCoreo) )

where 8 and g are positive scales and shape parameters.
The random variable with PDF (2) is denoted

by X~TROW — G (6, B, w). By inverting (1), the form

of quantile function related to the TROW — G family is
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2. THE TROWIE DISTRIBUTION

The PDF and CDF of the one scale-parameter
IE distribution are g(x;2) =:—2e"1/x and G(x; 1) =
e ™* with x>0 and 2>0 (see [16]-[18]). By
inserting the CDF of IE in (1), the CDF of a new
extended version TROWIE can be obtained as
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By inserting the PDF and CDF of IE in (2), the
corresponding PDF follows, is
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The random variable with PDF (6) is denoted by

X~TROWIE (6, B, 1), and the PDF's natural logarithm
of (6) is
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With the aid of the following extended special
formulas,
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The essential expanded form of the CDF (5) is
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The corresponding essential expanded form of
the PDF (6) is
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Plots of the CDF and PDF of the TROWIE
distribution for few parameter values are shown in
Figures 1 and 2. Figure 1 clearly demonstrates the
common CDF's features. Figure 2 displays some PDF
shapes including decreasing, right-skewed, left-skewed,
reversed J, and symmetric, which denote the suitability
of TROWIE to model different positive data.
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Figure 1. A plot of the CDF with some particular parameter
values.
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Figure 2. A plot of the PDF with some particular parameter
values.

The other essential properties of TROWIE
distribution are discussed in the following sub-sections.

2.1. Linear Representation and Related Measures
Capital Each Word of Title

The f(x)¢ in (9) can rewrite as
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where g(x; A[B(k + 1) + £]), represents the PDF of
the traditional IE with parameter A[B(k + 1) + ¢]. That
is the PDF of TROWIE is expressed as a linear
combination of the IE distribution.

Regards to (11), r™non-central moment can
be found as

1
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central moment of IE with parameter A[B(k + 1) + £].
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Further, based on the linear representation, the
characteristic function of the TROWIE is given by

= 1
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where @y () geuap+n+en,; 1S the  characteristic
function of IE with parameter A[B(k + 1) + £]. Thus,
the form of the characteristic function is
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where K, (2{/—itA[B(k + 1) + £]) is the Bessel's
modified function, K,(v) = %fowy“‘l e‘g(y’ry_l)dy,
witha = 1and v = 2\/—itA[B(k + 1) + £].

2.2. Quantile Function and Related Measures
Recall (3) with baseline distribution IE,
Geo\ ! -
¥(@) (52) =v@(e—1) =@ =
eM* —1 = e** =1+1~1(q). After taking the
natural logarithm for both sides, the quantile function is

Q) = AIn(1 + 9 (@)] (14)
where
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e

The median and simulated data of TROWIE
random variable can be attained respectively via putting
q=1/2 and replacing g with U where
U~Uniform (0,1).

(15)

2.3. Reliability Measures

The reliability measures of any lifetime
equipment are the core tools for analyzing aging and
associated aspects. The most commonly used measures
in real-life data analysis and especially in reliability
engineering are [19] reliability R(x) =1 — F(x),
hazard h(x) = f(x)/R(x), cumulative hazard ch(x) =
—In(R(x)), and reverse hazard rh(x)=f(x)/
F(x) functions that employed to assess how well an
item (component or system) performs. Related to CDF
and PDF of TROWIE in (5) and (6), the four mentioned
measures can easily attend. Figures 3 and 4 display the
plots of the reliability and hazard of TROWIE
distribution for some parameter values. Figure 3 clearly
demonstrates the common features of the reliability
function. Figure 4 displays some hazard shapes
including increasing, decreasing, right-skewed, J, and
reversed J, which indicate the suitability of TROWIE to
analyze various sorts of lifetime data.
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Figure 3. A plot of the reliabilty with some particular
parameter values.
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Figure 4. A plot of the hazard with some particular
parameter values.
2.4. Entropies

Information theory uses entropy to describe the
degree of uncertainty linked with random variable.
The entropy of TROWIE random variable can be
measured in different ways, two of them are considered
in this sub-section.

The first entropy (Shannon entropy) with

formula E; = —E(In(f(x))) [15] and [19] can be
achieved from (7) as

_ —8/2
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where E G) asin (12) with r = —1, and E(In(X)) can
be obtained related to PDF (9) as
E(In(X)) = fooln(x)f(x)"’ dx
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After using the transformation u = A[B(k + 1) +¢]/
x—x=Apk+1)+£]/u and dx=-A[p(k+

1) + 4] uizdu, and recalling the special formula S4,
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—0.577.More over, with the assistance of S1 — S3 and
extension formula S5,
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The other expectations in (16) can be obtained
with some simple mathematical steps as
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where E(X~%) as in (12) with r = —s.

To obtain the second entropy (relative
entropy), consider f(x)and f;(x) to be the PDFs of
two independent random variables following TROWIE
respectively with parameters (6,5,1) and (0,, 81, 41),
then

_ 163
b5 (n(22)) .

= E(n(f(0)) - E(in(f,(x)))

where E(In(f(x))) and E(In(f;(x))) can easily be
obtained as mentioned before.
2.5. Reliability Stress Strength (RSS) Model

The RSS is a term used in reliability theory to
describe the life of an experimental unit under random
stress (Z) and random strength (X). The system
operates well if X > Z, or when the strength exceeds the
stress (see [19] and [20]), which means that the
experimental unit breaks instantly when Z applied to it
exceeds X. As a result, the measure of experimental unit
reliability is P(X > Z). The RSS of two independent
variables X~TROWIE(6,8,1) and
Z~TROWIE (04, B1, A1) can be obtained with recalling
"(8)" with (04, By, A1) by RSS = E(F;(x)¢) as
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Based on (19) with A; and B,k respectively
instead of A and B, the RSS is
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2.6. Maximum Likelihood Estimators (MLE)

Regarding PDF (6), for a complete random
sample (x4, x5, ..., x,) Of size n, the natural logarithm
likelihood function related to TROWIE with the vector
of parameters A = (9 B, is

6/2) ﬁlz
_2; In(x) — (B + 1)11; In <1 - e‘z)
_ ;(e/l/xi 1) ; n (1 ~ e_(eyxi_l)—;a)

n
0 _(eMxi1) P\
_“225; (1 —e (e ) )
i=
The MLE of three parameters can be obtained
numerically through solving the not closed forms of
a¢(Alx) a¢(Alx)
90 =0, ap =0,

i’(A|x) = nln(

(24)

nonlinear differential equations

o¢(Alx)
an

3. SIMULATION STUDY

A simulation study is conducted to assess the
performance of MLE to study how these estimators of
the unknown parameters behave for several sample
sizes and different parameter combinations.

For each sample size, 3000 random samples of
TROWIE (6, B,A) are generated via simulated formula
involved in (14). The MLEs are obtained using the
iterative technique available in program R (optim
function). The performance of MLE is evaluated with
Average Estimates (AE) and Mean Square Error
(MSE),

AE(A)—3000 2290(4;); A=6,pB, 0r 2 and
MSE(R) = —— y3900(3, — A)* .

3000

=0.

The simulation outcomes related to six
different combinations of parameters (for the PDF
shapes, see Figure 2 with four sample sizes are shown in
Table 1. It is noted that as sample size increases, the
values AE tend to be close to the true values, and MSE
values seem to be decreasing as expected,
demonstrating the consistency of the estimators.

TABLE 1. Values of AE and MSE related to the parameters

n=15

Tr. AE MSE Tr. AE MSE

A

6 791 8327320 8.087636 1.93 2.012803  3.082864
B 403 4441194 1374382 034 0.374973  0.009585
A 007 0.069945 0.000015 0.09 0.098021 0.001762

6 021 0472502 7.274642 5.8 5.734592  1.749384
p 097 1.054819 0.054117 7.3 8.025454  3.670264
A 291 3.051733 0589844 0.04 0.039873 8x 1077
6 697 6515750 4.235454 375 3.517010 8.892786
p 099 1131390 0.100377 0.53  0.594638 0.030576
A 073 0.698358 0.020149 2.09 2.139330 0.934870
n =30
A Tr. AE MSE Tr. AE MSE
6 791 8232776 6.113207 193 2.023179 1.867331
B 4.03 4216355 0.529582 0.34 0.354612 0.003453
A 007 0.070072 0.000009 0.09 0.094913 0.000804
6 021 0.463850 5.850661 5.8 5.803626  1.325745
p 097 1.002085  0.020135 7.3 7.657964  1.505122
A 291 3.023564 0.421412 0.04 0.039949 5x 1077
6 697 6.482723 3456168 3.75 3.700618 5.965475
B 0.99 1068240 0.039921 0.53  0.555355 0.012235
A 073 0702371 0.012082 2.09 2.156232 0.569826
n =60
A Tr. AE MSE Tr. AE MSE
6 791 8122817 3.651627 193 1990555 1.180167
B 4.03 4114413 0.243656 0.34  0.345894  0.001532
A 007 0.070105 0.000006 0.09 0.093067 0.000408
6 021 0.372998  4.254743 5.8 5.846645  0.977229
B 0.97 0980548 0.009239 7.3 7.479026  0.693581
A 291 2987964 0295312 0.04 0.039993 3x 1077
6 697 6.592483 3.418955 3.75 3.739122 3.585034
p 099 1.033369 0.019687 0.53 0.540339 0.005700
A 073 0.711428 0.009384 2.09 2.136193 0.301010
n=120
A Tr. AE MSE Tr. AE MSE
6 791 8125081 3.007407 193 1.962725 0.677580
p 403 4061155 0.114222 0.34 0.342609 0.000712
A 007 0.070149 0.000004 0.09 0.091480 0.000215
6 021 0.309839 2.678956 5.8 5.929748  0.759765
B 097 0.972393  0.004317 7.3 7.378719  0.320927
A 291 2955075 0.176735 0.04 0.040035 2x 1077

6.97 6.719152  3.111888 3.75 3.733695 2.118044
099 1.013170 0.011206 053 0.534231 0.002852
0.73 0.719259  0.007652 2.09  2.116098 0.167366

N ©
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4. APPLICATIONS TO REAL DATA

In this section, the flexibility of TROWIE
distribution is proved by analyzing medical and
engineering datasets given as follows.

Medical dataset: The data consist of 120 daily death
cases of COVID-19 in Iraq from 1% August to 28"
November 2021 accessible at the Iragi Ministry of
Health, Public Health's Directorate [15].

Engineering dataset: The data consists of 38 values of
the lifetime period operating the inverter split air
conditioner devices before failure happens, taken from
an lragi Home Electronics Company from 2018 to 2022,
are: 1.28, 2.20, 1.26, 27.00, 7.25, 28.17, 12.29, 10.00,
3.05, 3.20, 7.15, 5.27, 6.22, 5.10, 4.12, 8.15, 4.19, 8.03,
6.25, 1.15, 11.00, 5.27, 7.24, 5.12, 8.15, 8.20, 3.13,
1.21,5.20, 3.18, 6.12, 2.10, 7.24,1.29, 2.22, 3.17, 28.22,
19.10. The integer number denotes the months and the
decimal number denotes the days.

Tables 2 and 3 include summary descriptive statistics
that can be used to infer the nature of the datasets. The
first set of data is right-skewed and platykurtic, and the
second is right-skewed and leptokurtic. The TROWIE's
fitting behavior is compared with other extended IE
related to five families, namely Beta-G, Kumaraswamy-
G, Exponentiated Generalized-G, Weibull-G, and
Gompertz-G, respectively denoted by BelE, KulE,
EGIE, WelE, and GolE. It is important to point out that
the p-values of the goodness of fit test Kolmogorov-
Smirnov (K-S) associated with fitted TROWIE and
competitive distributions are all significant values
(greater than 0.05). The traditional distribution IE is
also included in the comparison. For the comparing
process, the negative estimated log-likelihood (- 2),
and common information criteria (IC) related to Akaike
(AIC), Consistent Akaike (CAIC), Bayesian (BIC),
Hanan and Quinn (HQIC) (see [15] and [19]) are
employed. The distribution with the lowest values of
these criteria is the best fit for the considered dataset.
Tables 4 - 7 exhibit the outcomes of various MLE
values and IC values. The TROWIE distribution clearly
has the lowest values of IC making it the best suited to
represent COVID-19 medical data and lifetime period
engineering data compared to other competitor
distributions.

TABLE 2. Descriptive Statistics related to medical data

TABLE 4. MLE values related to medical data

Dist. 0 B A
TROWIE 0.084405 1.201666 24.000442
BelE 11.94404 4397245 11.041476
KulE 7.794827 6.321404 10.946719
EGIE 4528481 1.640757 57.672792
WelE 4.050667 1.640752 10.005726
GolE 0.005616 2.425328 4.1478026
IE 34.001800

TABLE 5. MLE values related to engineering data

Dist. [ B i
TROWIE 008389882  0.67202273  2.84322329
BelE 0.13633080  3.52900290  32.2836614
KulE 1.08488600  1.74442600  4.71216500
EGIE 422806020  0.15457620  28.5583330
WelE 2.38650400  1.84243600  1.16782200
GolE 0.85214660  0.66453520  3.74076890
IE 3.64531100

TABLE 6. Information criteria for fitting medical data

Dist. —? AIC CAIC BIC HQIC

TROWIE 519.715 104543 1045.64 1053.79  1048.83
BelE 523.711 105342 1053.63 1061.78 1056.82
KulE 522.228 105046 1050.66 1058.82  1053.85
EGIE 523.410 1052.82 1053.03 1061.18 1056.22
WelE 519.946 1045.89 1046.10 105425 1049.29
GolE 522576 1051.15 1051.36 1059.51 1054.55

IE 571.603 114521 114524 114799 1146.34

TABLE 7. Information criteria for fitting engineering data

Dist. —? AIC CAIC BIC HQIC

TROWIE 109.331 224.662 225368 229.575 226.410
BelE 109.619 225.238 225944  230.150 226.986
KulE 110562  227.124 227.830 232.037 228.872
EGIE 109.583 225166 225.872 230.079 226.914
WelE 109.459  224.918 225.624 229.831  226.666
GolE 109.356  224.711 225417  229.624  226.459

IE 113.050 228.099  228.210 229.737  228.682

Stat. Mean Median Min. Max. Sk. Ku.

Val. 42758 36.5 7.00 87.00 0.39219 -1.11064

TABLE 3. Descriptive Statistics related to engineering data
Stat. Mean Median Min. Max. Sk. Ku.

Val. 7.33 5.27 1.15 2822 207 391

5. CONCLUSIONS

A new extended version of inverse
exponential distribution named Truncated Rayleigh
Odd Weibull Inverse Exponential is proposed. The
essential statistical functions, properties, entropies,
linear representation, measures of reliability, and
stress strength are derived. The shapes of the density
and hazard functions are investigated. The density
function may be decreasing, right-skewed, left-
skewed, reversed J, and symmetric. Further, hazard
function may be increasing, decreasing, right-
skewed, J, and reversed J, which indicate the
suitability of the new extended to analyze various
lifetime data. The three unknown parameters are
estimated with the method of maximum likelihood
and a simulation study examines the accuracy of the
estimates. Two applications based on real medical
and engineering datasets are considered. Based on
the numerical results of different information criteria,
new distribution is preferable to several well-known
comparable models including the traditional inverse
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exponential distribution due to its flexible features.
This adaptability might make it possible to use the
new distribution in more application areas. Other
parameter estimation techniques, like least squares,
weighted least squares, moments, and Bayesian
might also be taken into consideration as a potential

field for future research.
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