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A B S T R A C T  
 
         The paper presents a detailed numerical analysis of the nonlinear fourth-order fractional reaction-

diffusion equation using the compact difference method. The introduction of the fourth-order fractional 
derivative adds additional complexity to the equation, making its analytical solution challenging. 

Therefore, a numerical approach becomes necessary to understand the behavior of the equation and 

obtain approximate solutions. The compact difference method, known for its accuracy and efficiency 
in solving differential equations, is used to discretize the spatial and temporal derivatives of the 

equation. The fractional derivatives are approximated using suitable fractional difference operators. 

The resulting system is solved iteratively using appropriate numerical techniques. The study delves 
into a reaction-diffusion model utilized in brain gliomas, incorporating two different diffusion 

functions. In order to achieve a thorough comprehension, the analysis is broadened to encompass 

various types of tissue environments. Diverse scenarios are scrutinized, with the diffusion coefficient 
staying consistent to depict a uniform tissue environment. Furthermore, instances where the diffusion 

coefficient changes spatially are explored, bringing heterogeneity into the model. This spatial diversity 

accommodates the differing characteristics of distinct regions within the brain. Following this, the 
examination is expanded to include heterogeneous tissue environments in two dimensions. 

 
 

 

  

NOMENCLATURE 
  

BR  v  (Ð, µ, a, b, H)
 a parameter in the two-dimensional 

simulation 

Nt time step size in the accuracy test   

Nx spatial grid size in the accuracy test   

T final time in the evaluation   

  Greek Symbols  

Subscripts  Φ Phi 

n 
used in the context of time steps, e.g., 

∪𝑛 
ε Epsilon 

x, y 
representing spatial dimensions, e.g., 

C(x, y, 0) µ

 

Mu 

t 
representing time, e.g., t = 50, t = 100,  

t = 650, t = 850 
√ Square root symbol 

Nx, Nt 
representing spatial and time grid sizes, 

e.g., Nx × Nt 
  

L2, L1 
representing norms, e.g., L2Error, 

L1Error 
  

 
1. INTRODUCTION1 

A fourth-order compact difference method is a 

numerical time-fractional 4th-order reaction-diffusion 

equation. This method approximates the solution of the 
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equation by discretizing the domain and using finite 

difference approximations to represent the derivatives. 

The block_centered finite_difference method is a 

specific type of 4th-order compact difference method that 

has been applied to various types of differential 

equations, including parabolic equations . technique used 

to solve differential equations, specifically the non 

linear. This method is known for its ability to 
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approximate the exact solution and its derivatives while 

preserving the local conservation of the problem. It is 

particularly useful for problems with Neumann boundary 

conditions, as it eliminates the need to separately 

consider the numerical solution near the boundary. The 

time-fractional 4rth-order reactiɒn-diffusioɒn equation is 

a mathematical model that describes the behavior of 

certain physical and biological systems. It combines the 

concepts of reaction and diffusion, as well as fractional 

derivatives that capture the history dependence of the 

system. The time-fractional derivative is especially 

effective in accurately describing dynamic processes 

with time variables. The block_centered finite-difference 

method for the time-fractional 4th-order reactiɒn-

diffusiɒn equatiɒn has not been widely studied in the 

literature. However, there have been developments in 

related areas, such as the block_centered 

finite_difference method for parabolic equations with 

fractional-order time derivatives. These studies have 

demonstrated the stability and convergence of the 

method and provided error estimations for the 

approximate solution and its derivatives. In summary, 

the 4th-order compact difference method, specifically the 

block-centered finite-difference method, is a promising 

numerical technique for solving the nonlinear time-

fractional 4th-order reaction-diffusion equation. Further 

research is needed to fully explore its potential and 

develop efficient algorithms. 

 

2. EVALUATION OF CONVERGENCE FOR THE 
F_TRACKING METHOD IN A ONE-DIMENSIONAL 
MODEL 
             In the "logistic diffusion model" (2.1)-(2.5) with 

parameter values (Ð, µ, a, b, H) = (0.40, 10.1, 1.1, 1.1, 

1.1) and initial condition ∪0 = cos(x^2), we investigate 

the effect of varying the temporal size while maintaining 

a fine spatial resolution. The convergence and error 

analysis of the " diffusion logistic model(crank-nicolson) 

" are presented in Table 2.1 for a the concluding time of 

t_end = 1. The discrepancy is calculated, as the disparity 

between the numerical solutiɒn and the exact solutiɒn, 

whenever available. In cases where the exact solutiɒn is 

not provided, the solutiɒn obtained employing a 

meticulous level of detail is considered as the a 

benchmark or precise solutiɒn. Notably, 2sd- In all 

instances, a convergence of higher order is observed in 

the spatial dimension. 

 
TABLE 1.  Accuracy test of U of diffusion logistic  
Nx × Nt L2Error Order 

(t) 

L1Error Order 

61×2e06 4.10e-003 4.4e-03   
121×2e06 9.40e-004 2.250 9.35e-004 2.14 

241×2e06 2.20e-004 2.160 2.10e-004 2.10 

481×2e06 4.36e-05 2.360 4.08e-05 2.33 
961×2e06 Reference    
 

TABLE 2. Accuracy results for    diffusion logistic model of 

one dimension  
Nx × Nt L2Error Order 

(t) 

L1Error Order 

61×2e06 1.68e-01 4.28e-02   

121×2e06 2.72e-02 2.63 9.40e-03 2.19 
241×2e06 6.20e-04 2.62 4.09e-04 2.36 

481×2e06 4.36e-05 2.84 4.08e-05 2.33 

961×2e06 Reference    

  

Analysis of convergence the F- methodology for 

stabilizing the one-dimensional: Considering the 

population spread with logistic diffusion medal (2.1)-

(2.5) with parameter values (Ð, µ, x, y, H0) = (0.400, 

10.1, 1.1, 1.1, 1.1) and initial condition U0 = cos(x^2), 

we investigate the impact of varying the temporal size 

while maintaining a fine spatial resolution. Table 2.2 

presents an examination of the error (both L-2 and L11 

norms) and the cɒnvergence behavior of the "front-fixing 

method", with a the concluding time of t_end = 1. As 

anticipated, a 2sd- convergence of a certain degree in the 

spatial dimension is readily noticeable . 

 

3.  CONVERGENCE TEST FOR   DIFFUSION LOGISTIC 
MODEL(CRANK-NICOLSON) OF 2D MODEL WITH 
RADIAL-SYMMETRY 
               We investigate the 2D The logistic diffusion 

model exhibiting radial symmetry, characterized by 

parameters (Ð, µ, x, y, H) = (0.400, 10.1, 1.1, 1.1, 0.54), 

and an initial condition of ∪0 = cos(r/2). This model 

serves as a test case for evaluating the performance of 

the F-tracking- method. In Table 3.1, we examine the 

discrepancy (both in terms of L_2 and L_1 norms) and 

the spatial convergence order of the F-tracking - 

method's solution, with a final time of T = 0.0100. Once 

again, we observe a 2nd- convergence rate in the spatial 

dimension. The convergence test for the F-fixing method 

applied to the 2D model with radial symmetry is 

presented in Table 3.2, showing the accuracy results 

obtained. 

TABLE 3. Accuracy test of U of    diffusion logistic 
model(Crank-Nicolson )  

Nx × Nt L2Error Order  L∞Error Order 

71×2e04 6.50e-04   2.71 e-04  

141×2e04 1.40e-04 2.20 5.35e-04 2.14 

281×2e04 3.20e-05 2.15 1.10e-04 2.10 

561×2e04 6.36e-06 2.38 2.08e-05 2.35 

1121×2e04 Reference    
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TABLE 4. Accuracy results for diffusion logistic model 
(Crank-Nicolson ) of one-dimensional 

Nx × Nt L2Error Order 

(t) 

L1Error Order 

71×2e05 3.68e-01    

141×2e05 6.72e-02 2.15 1.40e-03 2.22 

241×2e05 1.20e-04 2.14 2.09e-04 2.14 

581×2e05 3.36e-05 2.34 2.08e-05 2.35 

1121×2e05 Reference    

In this section, we conduct drawing a parallel 

between, the diffusion logistic model(Crank-Nicolson ) 

and the diffusion logistic model for simulating the 2D 

population spread through logistic diffusion exhibiting 

radial symmetry. The model is characterized by 

parameters (Ð, µ, x, y, H0) = (0.400, 10.1, 1.1, 1.1, 1.1), 

an initial condition of ∪ 0 = cos (
𝑟

2
), and a dimensional 

magnitude of h = 0.00625. It  Illustrates that the"  

diffusion logistic model(Crank-Nicolson ) " closely 

aligns with the    one-dimensional when applied to the 2D 

spread of   diffusion logistic model(crank-nicolson )  

with radial symmetry. To analyze the approach based on 

level sets for the 2D model, we perform numerical tests 

and convergence analysis. The approach based on level 

sets is employed to study the two-dimensional logistic 

diffusion model displaying radial symmetry, described 

by equations (2.39)-(2.43) with parameters (Ð, µ, x, y) = 

(0.400, 10.1, 1.1, 1.1). The initial level set function 

represents a circle with a radius of 1, and the initial 

condition is depicted using a red dotted curve to 

visualize the simulated species boundary. Additionally, a 

blue circle is introduced to indicate the resemblance of 

the evolving boundary with a circle. The measurement of 

the circumference of the blue circle, denoted as R, is 

calculated as the mean separation among the intersection 

points of ϕ(t) with the x-axis and y-axis at the boundary 

and the point of origin, i.e., R = √(x^2 + y^2), where (x, 

y) ∈ ϕ(t) represents all the intersection points of ϕ(t) with 

the x-axis and y-axis. According to reference [13], the 

resolution of the equations. (2.21)-(2.24) is unique and 

exhibits radial symmetry. It  displays the progression 

of ∪(t, x, y) and ϕ(t), demonstrating a perfect match 

between the blue circle and the red dotted curve, 

indicating the preservation of the geometric shape of the 

boundary ϕ(t). Furthermore, it is noticeable that .∪(t, x, 

y) exhibits radial symmetry, similar to ∪0. Our attention 

is directed towards the measurement of the boundary's 

radius. ϕ(t), denoted as H(t), and utilize ∪(t, r) = ∪(t, x, 

y) to examine the spatial accuracy order of the approach 

based on level sets technique. The assessment of the 

convergence of the solution for u(r) at T = 0.100 and the 

front H(t) can be performed. 

 

4. COMPARISON AND CONVERGENCE ANALYSIS. 
            Observing the comparison between the level set 

method and the F- tracking -method, we consider 

different spatial sizes, namely h = 0.02500, h = 

0.012500, h = 0.0062500, and h = 0.00312500. The 

obtained results are then compared to those of the F- a 

tracing approach using identical initial conditions 

configuration and step size h = 0.00312500. The 

comparison clearly demonstrates a high degree of 

consistency between the level set method and the front 

tracking method, indicating their agreement with each 

other. To further assess the performance of the level set 

method, Table 1 provides an analysis of the error (both 

L-2 and L-1 norms) and the convergence order for the 

solution gained through employing the level set 

technique, culminating at a designated endpoint of T = 

0.1. The table presents findings indicating the 

convergence rates in regard pertaining to both the 

solution u and the leading edge H(t) fall within the range 

of 1 to 2. 

 
 TABLE 5. Accuracy test of U of    diffusion logistic 

model(crank-nicolson ) 

Nx × Nt L2Error Order  L∞Error Order 

28×28×161 5.50e-04   9.71 e-04  

58×58×166 3.40e-04 0.20 5.35e-04 0.14 

112×112×2530 1.20e-05 1.15 2.10e-04 1.10 

240×240×1050 4.36e-06 1.38 7.08e-05 1.35 

551×551×41951 Reference    

TABLE 6. Accuracy results for diffusion logistic model(crank-
nicolson   ) of one- dim    

Nx × Nt L2Error Order 

(t) 

L1Error Order 

28×28×161 4.68e-01    

58×58×166 2.72e-02 1.15 5.40e-03 1.22 

112×112×2530 8.20e-04 1.14 2.09e-04 1.14 

240×240×1050 2.36e-05 1.34 3.08e-05 1.35 

551×551×41951 Reference    

 

5. NUMERICAL DICHOTOMY THE DICHOTOMY 
BETWEEN EXPANSION AND DISAPPEARANCE 
 

Example 1 : The one-dimensional diffusive 

logistic model with a free boundary, as formulated in 

reference [14], is used to describe the population density 

of the invasive species U(t, x), where it depends on time 

t and the spatial variable x, as stated in the following 

expression: 

∂ ∪

∂t
−

D ∂2 ∪

∂x2
= ∪ (a −  b ∪), t >  0,

x ∈ (0, H(t)],       (2.1) 
 

In addition to the boundary conditions, the text 

emphasizes the importance of considering all relevant 

factors 
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∂ ∪

∂x(t, 0)
=  0,∪ (t, H(t)) =  0, t >  0, (2.2) 

the Stefan condition 

H0(t) =  −
μ ∂ ∪

∂x(t, H(t))
, t >  0, (2.3) 

 

and the initial conditions 

 

H(0) =  H0,∪ (0, x) =   ∪0 (x), 0 ≤  x ≤  H0. (2.4) 
 

The function ∪₀(x) fulfills the subsequent properties: 

∪0 (x) ∈  C2([0, H0]),∪0′ (0) = ∪0 (H0) =  0,∪0 (x)
>  0, 0 ≤  x <  H0. (2.5) 

 

H(t) represents  the mysterious shifting boundaries 

within which the population is dispersed within the range 

[0, H(t)]. D > 0 is the rate of dispersal, with the 

parameters a and b indicating the intrinsic diffusion rate 

and intraspecific competition within the population, 

respectively.  The parameter μ >  0 . The Stefan 

condition (2.3) specifies the constant of proportionality 

that relates the population gradient at the front to the 

velocity of the advancing boundaries. 

Example 2 :of the free boundary logistic diffusion model 

(2.1)-(2.5), with parameter values (D, µ, a, b, H₀) = (1, 5, 

1, 1, 0.496) and U0 = cos (
πx

2H0), it can be observed from 

Figure 2.12 the spreading behavior that occurs even 

when H₀ = 0.496, which is less than the value of L = 

1.571. 

As another example, in the free boundary logistic 

diffusion model (2.1)-(2.5), we set the parameter values 

as follows: D = 1, µ = 5, a = 1, b = 1, and H₀ = 0.496. 

The initial function is given by ∪0 (x) = (
1

2
) cos (

πx

2H0). 

In this example, we keep the parameter values the same 

as in the previous example except that we decrease the 

initial value ∪. 

 
 

6. REACTION-DIFFUSION EQUATION IN TWO 
DIMENSIONS   

 

In this section, an evaluation of the stability of 

the linear system will be performed using the von 

Neumann technique of finite difference method derived 

from the two-dimensional equation of the linear model. 

The evaluation includes a spread component that 

increases rapidly and acts as an interactive term. 

𝜕𝑡

𝜕𝐶
=

𝜕𝑥
𝜕

𝐷(𝑥)𝜕𝑥

𝜕𝐶
+

𝜕𝑦
𝜕𝐷(𝑥)𝜕𝑦

𝜕𝐶
+ 𝜌𝐶.  (     32) 

From the construction of the derivative of the two-

dimensional interaction and interaction equation, which 

includes the coupled covariant isolation function, 

different terms can be reformulated to indicate a 

component of the term. Negotiate the system of equation 

(32) in a completely different way: 

1 +
2D(xi)Δt

h2
+

2D(xi)Δt

k2
−

ρΔt2

2
C{n+1,i,j}

−
D(xi)Δt

h2(C{n+1,i−1,j} + C{n+1,i+1,j})

−
D(xi)Δt

k2(C{n+1,i,j−1} +  C{n+1,i,j+1})

=  1 −
2D(xi)Δt

h2
−

2D(xi)Δt

k2

+
ρΔt2

2
C{n,i,j}

+
D(xi)Δt

h2(C{n,i+1,j} +  C{n,i−1,j})

+
D(xi)Δt

k2(C{n,i,j+1} +  C{n,i,j−1})

−
D(xi)Δt

4h
((Cx)n

{i+1,j}
− (Cx)n

{i−1,j}
)

−
D(xi)Δt

4h
((Cx){n+1}

{i+1,j}
− (Cx){n+1}

{i−1,j}
)

−
D(xi)Δt

4k
((Cy)n

{i,j+1}
−  (Cy)n

{i,j−1}
)

−
D(xi)Δt

4k
((Cy){n+1}

{i,j+1}
−  (Cy){n+1}

{i,j−1}
)

+
K(xi)Δt2

2
((Cx)n

{i,j}
+  (Cx){n+1}

{i,j}
) . 

 

The compact solutions algebraic systems linked 

to the finite difference approximation (23)  that can be 

rewritten in a different manner offer several advantages. 

One of the most compelling reasons is the presence of 

the innate characteristic of generating the resulting 

system of equations  which contains symmetric 

coefficient matrices equations. Moreover, these matrices 

possessing  a comparatively smaller range of frequencies 

compared to decreased bandwidth that stems from non-

compact solutions are particularly advantageous since 

they result in more efficient and computationally feasible 

solutions. Now, let us delve into the methods for solving 

these algebraic systems using the following notations: 

∪ =  [𝐶1, 𝐶2, … , 𝐶𝑚], 
∪ 𝑥 =  [(𝐶𝑥)1, (𝐶𝑥)2, … , (𝐶𝑥)𝑚] 

 

The matrix representation of the system of equations is 

as follows: 

𝐴1𝑈 ∪𝑛+1=  𝐵1(∪𝑛,∪ 𝑥𝑛,∪ 𝑥𝑛+1)  (34) 
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Once the approximation of ∪^n has been achieved at 

any given time step, ∪ 𝑥𝑛 can be obtained by solving 

tridiagonal systems 

𝐴2 ∪ 𝑥𝑛 =  𝐵2 ∪𝑛   (35) 
Equation (35) represents the matrix form associated with 

relations (8), which are tridiagonal systems that can be 

effectively resolved through the use of powerful 

numerical algorithms. The main goal is to solve the 

system (23) to estimate the unknown transporter vector 

∪^(n+1). Our approach faces significant challenges 

when incorporating the (n + 1)-the time level gradients 

of U on the left-hand side of Equation (34). These 

gradients are only available after determining the 

transportation parameter at the time level of (n + 1). To 

overcome this issue, we implement a convergence 

correction strategy. Despite the large dimensions of the 

coefficient matrix., we effectively tackled this obstacle 

by employing the bi-conjugate gradient stabilized 

(BiCG-Stab) technique, eliminating the necessity for 

preconditioning. 

The convergence condition for the BiCG-Stab iteration 

is. influenced by the size of the grid and the specific 

characteristics of the problem at hand. This approach is 

also applied when simulating other discussed schemes in 

this research, both in one or two dimensions. In the 

numerical experiments conducted in one aspect, we 

made use of an assortment one hundred and one spatial 

grids spanning from 0 to 50. The time step used was ∆t = 

0.02 days, which is approximately equivalent to 28.8 

minutes. As for the data related to the two-dimensional 

simulation, the values were as follows .: epsilon  = 

0.0100, h = 0.500 mm, k = 0.500 mm, and the growth 

rate ρ = 0.012000 𝑑𝑎𝑦^(−1). Initially, the particles were 

placed at the location (𝑥0, 𝑦0) = (25, 25), and we used a 

time step ∆t of 0.02 days (~28.8 min). The load capacity 

K was determined to be 62.5
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚
, and the maximum 

value of C(x, y, 0) was 39.89
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚
. Throughout the 

simulation, we maintained fivefold differences in 

diffusion coefficients between gray matter and white 

matter: 𝐷𝑤ℎ𝑖𝑡𝑒 ≈  5𝐷𝑔𝑟𝑎𝑦 . The proliferation rate ρ was 

set at 0.01200 𝑑𝑎𝑦−1, according to the model proposed 

by Swanson and colleagues for high-grade tumors [36]. 

All calculations were performed at maximum power, 

with 𝐾 =  62.5
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚
, and we used the following initial 

distribution: 

𝐶(𝑥, 0) =  (
1

√2𝜋𝜖
) ∗  𝑒−(

1
2

)∗ (
𝑥−𝑥0

𝜖
)

2

 

At the middle of the considered period, the 

position 𝑥0 =  25 mm was determined, and the 

parameter epsilont  was estimated to be 0.0100. When 

examining the distribution of C(x, 0), a peak appears at 

𝑥 =  𝑥0, with a value of about 39.89
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚
. This value, 

called 𝐶0, represents the local density of the tumor of 

about 39.89
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚
 before it begins to spread. 

After reviewing Figures 4a and 4b, it becomes clear that 

the concentration of primary tumor cells significantly 

decreases from 39.89
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 to 8.2
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 within one day 

using the known 4O-CEFE method. On the other hand, 

the concentration remains constant at 10.62
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 using 

the known 𝐼𝐵𝐸 method. Figures 5a, 5b, 6a, and 6b 

demonstrate the concentration of motor neuron tumor 

cells relative to the variable x using IBE on the left side 

and 4O-CEFE on the right side. In the simulation, a 

value of 𝜌 =  0.0129 𝑑𝑎𝑦−1, ∆𝑡 =  0.024 minutes 

(approximately 28.8 minutes), and ∆𝑥 =  0.5 𝑚𝑚 were 

used, covering time periods of 𝑡 ∈ (100, 200) and 

t(1050,1280. In Figure 5b, it is evident that the 4O-CEFE 

method outperforms the 𝐼𝐵𝐸 method by t = 200 days, 

with a tumor cell concentration of 3.95
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 compared to 

2.25
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 in the IBE method during the time period of 

𝑡 ∈ [1050,1280 ]  . According to Ozugurlu [23], it took 

1470 days using the 4O-CEFE method and 2300 days 

using the IBE method to reach maximum capacity 

(𝐾 =  62.4989979
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2). The data depicted in Figures 

6a and 6b showcases the information. It should be noted 

that the data in Figure 6a only goes up to 1280 days. The 

value of 𝑥_0 was set at 25 mm as the center for the 

analysis period. The coefficient ϵ is estimated to be 

approximately 0.0100. The cell distribution C(x, 0) 

exhibits a peak at 𝑥 =  𝑥0, estimated at around 

39.89
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2, denoted as 𝐶0, showing the tumor reaching a 

local density of approximately 39.89
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 before its 

spread begins. 
 The research conducted by Ozugurlu [23] aims to 

compare the results obtained using the IBE method with 

those obtained using the 4O-CEFE method. By studying 

Figures 4A and 4B, it becomes evident that the 

concentration of primary tumor cells significantly 

decreases from 39.89
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2𝑡𝑜
8.2

𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 within one day 

using the 4O-CEFE method. Meanwhile, the 

concentration remains constant at 10.62
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 using the 

𝐼𝐵𝐸 method. Figures 5A, 5B, 6A, and 6B illustrate the 

concentration of motor neuron sarcoma cells with respect 

to the variable x. The left side represents the IBE 

method, while the right side represents the 4O-CEFE 

method. The simulation was performed using the 

𝑣𝑎𝑙𝑢𝑒𝑠 𝜌 =  0.012 𝑑𝑎𝑦−1, ∆𝑡 =  0.02 minutes 

(approximately 28.8 minutes), and ∆x = 0.5 mm, 

spanning the time periods 𝑡 ∈ [100, 200] and 𝑡 ∈
[1050, 1280 ] . Figure 5B indicates that the 4O-CEFE 

method outperforms the 𝐼𝐵𝐸 method by t = 200 days, 

with a tumor cell concentration of 3.95
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2compared to 

2.25
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2 in the 𝐼𝐵𝐸 method during the time period 𝑡 ∈

(1050 , 1280). According to Ozugurlu [23], it took 1470 

days using the 4O-CEFE method and 2300 days using 
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the IBE method to reach the maximum capacity (𝐾 =

 62.4989979
𝑐𝑒𝑙𝑙𝑠

𝑚𝑚2), as shown in Figures 6A and 6B. It 

should be noted that the data in Figure 6A the time frame 

is restricted to a maximum of 1280 days. 

 

 

 

 

(c) The concentration of the 

tumor after five days (t = 50). 

 

(d) The concentration of the 

tumor after five days (t = 100). 

 

 
Figure 1. The depiction of glioma concentration in a 2-

dimensional diffusion logistic model within a heterogeneous 

tissue environment is presented with respect to position at 

different time intervals . 

 

 

(c) The concentration of the tumor after five days (t = 650). 

Figure 2.  The diagram depicts the fluctuation of glioma tumor 

levels in a two-dimensional logistic diffusion model across a 

diverse tissue setting at various time points and positions. 

 

 

 
7. CONCLUTION 

Our study aims to introduce different variables 

into the model by considering spatial variation. This 

spatial variation is taken into account for the varying 

properties observed within the system. By integrating 

disparate tissue environments, we obtain a more 

comprehensive understanding of the behavior and 

dynamics of the model. These studies  allow us to 

capture the complexity and detail of real-world 

scenarios, particularly regarding Gliomas of the brain. 

Overall, our results highlight the importance of 

considering spatial variability and its impact on the 

overall behavior of the system. 
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Arabic Abstract 

باستخدام طريقة الفروق المضغوطة. إدخال المشتقة الكسورية من الرتبة   يقدم البحث تحليلاً عددياً مفصلاً لمعادلة التفاعل والانتشار غير الخطية ذات الرتبة الرابعة والكسورية

النهج العددي ضرورياً لفهم سلوك المعادلة والحصول على حلول تقريبية. تسُتخدم طريقة  الرابعة يضيف تعقيداً إضافياً للمعادلة، مما يجعل حلها التحليلي صعباً. لذلك، يصبح 

ت فروق  ها وكفاءتها في حل المعادلات التفاضلية، لتقسيم المشتقات المكانية والزمنية للمعادلة. يتم تقريب المشتقات الكسورية باستخدام مشغلاالفروق المضغوطة، المعروفة بدقت

ورام الدماغ الجليومية، وتدمج وظيفتي انتشار مناسبة. يتم حل النظام الناتج بشكل تكراري باستخدام تقنيات عددية مناسبة. تتناول الدراسة نموذجًا للتفاعل والانتشار يسُتخدم في أ 

معامل   ثبات  مع  متنوعة،  يتم فحص سيناريوهات  الأنسجة.  بيئات  أنواع  ليشمل مختلف  التحليل  توسيع  يتم  فهم شامل،  تحقيق  أجل  من  أنسجة مختلفتين.  بيئة  لتصوير  الانتشار 

التي يتغير فيها معا  الحالات  استكشاف  المتباينة موحدة. علاوة على ذلك، يتم  المكاني استيعاب الخصائص  التنوع  النموذج. يتيح هذا  إلى  التباين  مل الانتشار مكانياً، مما يجلب 

 .لتشمل بيئات أنسجة متباينة في الأبعاد الثنائية. للمناطق المختلفة داخل الدماغ. بعد ذلك، يتم توسيع الدراسة

 

 


